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Abstract

The formalism of twistors [the ‘spinors’ for the group 0(2,4)] is employed to
give a concise expression for the solution of the zero rest-mass field equations,
for each spin (s = 0, , 1, ...), in terms of an arbitrary complex analytic function
f(Z*) (homogeneous of degree —2s — 2). The four complex variables Z* are the
components of a twistor. In terms of twistor space (C-picture) it is analytic
structure which takes the place of field equations in ordinary Minkowski
space-time (M-picture). By requiring that the singularities of f(Z%) form a
disconnected pair of regions in the upper half of twistor space, fields of positive
frequency are generated.

The twistor formalism is adapted so as to be applicable in curved space-times.
The effect: of conformal eurvature in the M-picture is studied by consideration
of plane (-fronted) gravitational ‘sandwich’ waves. The C-picture still exists,
but its complex structure ‘shifts’ as it is ‘“viewed’ from different regions of the
space-time. A weaker symplectic structure remains. The shifting of complex
structure is naturally described in terms of Hamiltonian equations and Poisson
brackets, in the twistor variables Z% Z,. This suggests the correspondence
Z, = 0/0Z% as a basis for quantization. The correspondence is then shown to be,
in fact, valid for the Hilbert space of functions f(Z%), which give the above
twistor description of zero rest-mass fields. For this purpose, the Hilbert space
scalar product is described in (conformally invariant) twistor terms. The
twistor expressions for the charge and the mass, momentum and angular
momentum (both in ‘inertial’ and ‘active’ versions, in linearised theory) are
also given.

It is suggested that twistors may supply a link between quantum theory and
space-time curvature. On this view, curvature arises whenever a ‘shift’ occurs
in the interpretation of the twistor variables Z%, Z, as the twistor ‘position’ and
‘momentum’ operators, respectively.

1. Introduction

In an earlier paper (Penrose, 1967a) the formalism of fwistor algebra
was developed, which treats the geometry of Minkowski space-time
from the point of view of its null line and null cone structure. In the

T This work was partly carried out during the author’s five-month stay at
Cornell University.
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62 ROGER PENROSE

present paper this formalism is used to give a concise description of
zero rest-mass fields, and the formalism is developed further so as to
be applicable in curved space-times as well as flat. An unexpected
interconnection between these two ideas leads to a new view of the
relation between quantum theory and space-time curvature.

According to the twistor formalism, any conformally covariant
operation in Minkowski space-time has a description in purely
twistor terms, and with the introduction of a fixed skew-symmetric
‘metric’ twistor I,g we can also express Poincaré covariance in purely
twistor terms. The twistor algebra leads to a geometrical picture of
phenomena (the C-picture) which, although strikingly different from
the usual space-time description (M -picture), is nevertheless com-
pletely equivalent to it. The points (i.e. ‘events’) of the M-picture
correspond to non-local structures (‘lines’—each with the topology
82) in the C-picture; conversely the points of the C-picture correspond
to non-local structures in the M-picture (to null straight lines or,
more generally, to certain twisting null line systems). An outline of
the results we require here will be given in Section 2.

The motivation for rewriting physical quantities in twistor terms
springs from several directions. In the first instance, there is simply
the hope that when a formalism so different from the usual one is
used, new insights may be gained. While it is true that certain im-
portant concepts, which were easy to express in the old formalism,
can become complicated in the new (which need not be a serious
drawback, since the old formalism is always at hand when required),
there are other operations of great utility in the new formalism which
one would be unlikely to come upon solely by considerations with the
old formalism. But are these new operations likely to be of any
particular importance to physics? It is here that I must be more
specific and mention some of those features which motivate the
specific choice of a twistor formalism for the description of space-time.

One of these features is that the twistor formalism is the natural
vehicle for the algebraic description of conformal invariance. Twistors
are, in fact, the ‘spinors’ appropriate to the six-dimensional pseudo-
orthogonal group O(2,4), which is 2-1 isomorphic with the 15-para-
meter conformal group of (the compactified) Minkowski space-time
(Cartan, 1914; Braver & Weyl, 1935; Hepner, 1962; Murai, 1953,
1954, 1958; Segal, 1967). The connected component of the twistor
group SU(2,2) is 2-1 isomorphic with connected component of

0(2,4) so that twistors (of valence [(1)]) give a four-valued four-

dimensional irreducible representation of the restricted conformal
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group. Any other finite-dimensional representation of the conformal
group can be expressed as a direct sum of twistor representations

(of general valence [é) ])

But is there reason to believe that the conformal group has any
fundamental significance to physics?t The attitude adopted here will
be that fields of zero rest-mass (which are conformally invariant) have
primary significance; and that in some way, rest-mass emerges as a
feature of interactions between these primary zero rest-mass fields.
A simple way such an interaction might be expressed emerges in the
van der Waerden description (van der Waerden, 1929) of the Dirac

equation:
VEAG =wp®, Ve ¥ =—pdy (L1)

Here u is a real constant, 21/2u7 being the mass of the field. We may
regard (1.1) as describing two neutrino-like fields ¢ ,, 4* whose free-
field equations are given by putting p = 0 in (1.1). These free-field
equations are then conformally invariant. We may take the view
that y is simply a coupling constant, given for all time, and that the
two-field interaction (1.1) simply breaks this conformal invariance.
The conformal group is then only strictly a symmetry of very high
energy physics—where energies are high enough that the rest-mass
interaction may be neglected (Kastrupp, 1962, 1966). Alternatively
we may imagine that y is ‘really’ a new variable field which for some
reason (perhaps of a cosmological nature or from stability considera-
tions, say) ‘happens’ to be transformable to a constant with a very
high degree of accuracy. With further equations on u, the entire set
of equations can be made conformally invariant, the equations (1.1)
referring to a three-field conformally invariant interaction. Finally,
we may take the view that the interaction terms in (1.1) are of a
phenomenological nature and the ‘accurate’ equations are really
much more involved. This view is presumably what would be implied
by the renormalization procedure. In addition, it is conceivable that
general relativity has some significant role to play in connection with
the existence of rest-mass, since gravitation is the only (known)
phenomenon of nature which requires that a definite choice be made
for the zero of energy, namely that it should coincide with the zero
of active mass.

I donot wish to prejudice the issue here as to the ultimate nature of
rest-mass. The attitude is only that it should be of significance to talk

T For a discussion of the relation of the conformal group to physics, see
Fulton, T., Rohrlich, F. and Witten, L. (1962). Rev. Mod. Phys., 34, 442.
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about free fields and that such fields may be viewed as having zero
rest-mass. A description in terms of twistors should then have some
importance as a ‘background’ formalism. Rest-mass could then be
treated along with other interactions at a later stage.

A second feature of twistor analysis, which has been highly instru-
mental in the motivation for its original development, lies in the
extent to which it ‘geometrises’ an important aspect of quantum
mechanics, namely the splitting of field amplitudes into positive and
negative frequency parts. In the twistor formalism, instead of
resorting to Fourier analysis, it is possible to exploit an alternative
description based on the positioning of singularities of analytically
extended functions.t As we shall see shortly, a positive or negative
frequency field will arise according as the singularities of a certain
analytic (holomorphic) function representing the field, form a dis-
connected pair of regions in the upper or the lower half of twistor
space. It is the fact that the twistors lead to a ‘mild’ form of ‘com-
plexification’ of the space-time which enables this idea to take on a
‘geometrical’ significance. The geometry of the C-picture involves its
complex analytic structure. The analytic nature of functions defined
in twistor space then yields the entire structure of zero rest-mass fields
in the M -picture; in particular, field equations and time-development,
now become simply particular aspects of C-picture analyticity.

Some of these matters will be described in Section 3. The aim there
is to show that zero rest-mass fields find a very natural and remarkably
simple description in twistor terms. This reinforces a belief that
twistors might possibly occupy a position in physics of deeper im-
portance than just as a technical device. But if twistors really do
occupy such a position, it would have to be possible to overcome one
of the supreme obstacles to such a viewpoint, namely that the for-
malism would in principle, at least, have to be applicable in (con-
formally) curved space-times. For even if general relativity is not the
correct theory of gravitation (and it is, to say the very least, the best
theory of gravitation available at the present time), there can be little
doubt that the conformal structure of space-time, as defined by its
null cones, does differ from that of Minkowski space-time. (A critical
feature of theories of gravitation based on a conformally flat null-cone
structure, e.g. Nordstrom’s theory, is that there is no resultant
bending of light by a massive body. It may be taken that this, at least,
is experimentally disproved.)

The essential difficulty involved in attempting to adapt the twistor

¥ See, for example, Streater, R. F. and Wightman, A. 8. (1964). PCT, Spin
and Statistics and All That. W. A. Benjamin, New York.
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formalism to conformally curved space-time lies in the fact that the
complex analytic structure of the C-picture is destroyed by conformal
curvature of the M-picture (Section 4). This would seem, at first sight,
to invalidate completely the use of twistors for conformally curved
manifolds, since it is precisely the complex analytic structure of the
C-picture which gives rise to all its important properties. However, it
is here that twistors supply an unexpected link between gquantum
mechanics and space-time curvature. A non-analytic transformation
of twistor space is one which mixes up the twistor coordinates Z* with
their complex conjugates Z,. But the precise type of non-analytic
transformation of the C-picture which is induced by the presence of
conformal curvature in the M-picture turns out to be one preserving
Poisson brackets, where Z, is regarded as the canonical conjugate of
Z*. This suggests that in the passage to quantum theory, Z* should
be regarded as an operator, where the operator Z, is identified with
0/0Z%. (Planck’s constant will be absorbed into the definition of the
twistor variables Z*.) With this identification, one can still operate
with analytic functions in twistor space. What in the ‘classical’ theory
was a ‘canonical’ non-analytic transformation of twistor space,
corresponds in the quantized (one-particle) theory, to linear trans-
formation of the space of analytic functions defined on twistor space.
In fact, with the appropriate choice of norm, these become unitary
transformations of a Hilbert space. The operations Z* and 0/0Z* now
become explicit operations in the M-picture which apply to zero
rest-mass fields. The operator Z* lowers the spin by %, while 9/0Z*
raises it by 4%. The identification of Z, with 8/0Z* becomes explicitly
consistent with the Hilbert space scalar product. Thus, we must
regard the analytic structure of the C-picture as being relevant to the
quantum structure of fields (e.g. to one-particle states), while the non-
analytic transformations induced by curvature in the M-picture refer
essentially to the classical limit.

We are led to a new view of the nature of space-time curvature. Let
us adopt the attitude that in a certain region of space-time, the
twistor variables Z* are the ones, in terms of which physical quantities
are to be expressed. The Z* are the C-space ‘position’ operators and
the Z, = 0/0Z* are the conjugate ‘momenta’. As we pass through a
region of conformal curvature (e.g. a gravitational wave) the ‘position’
and ‘momentum’ variables get mixed up. We may take a ‘self-
consistent’ or ‘Machian’ view of the correspondence principle, whereby
the particular choice of quantum variables which are to be regarded
as ‘position’ variables is governed by the nature of the large-scale
physical structures in the region under consideration. Then, as we
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move to another region of space-time, the influence of a change in the
large-scale structures is to effect a ‘shift’ in the natural interpretation
of the variables. Thus, curvature of space-time emerges as a phe-
nomenon intimately connected with such an attitude to the corre-
spondence principle and with the quantum structure of nature.

2. Outline of Twistor Algebra

The main features of twistor algebra that will be required here will
now bereviewed. For further details, the reader is referred to an earlier
paper (Penrose, 1967a). Let % x', 2%, «® be standard Minkowski
coordinates in flat space-time M—metric given by

ds? = (dz°)® — (dx')? — (dx?)? — (da®)®
Introduce a 2-spinor notation,T relating 44, z 4 4. to 2* by
20 = x5, = 27V (20 4 21), 20V = —wqp = 27Y2 (2% L ix?)  (2.1)
21 = g = 27U (g2 ix?),  alV =gy = 27V2 (20 — 2l

When the coordinates x* are real, the matrices (z44’) and (x4 4) are
Hermitian so we have two real coordinates #, » and one complex
coordinate {, given by

w= 0, v =z, £ = a2, 7= 210 (2.2)
The metric of M now takes the form

ds? = 2dudv — 2d{dl (2.8)

A twistor Z%, of valence [(1)] is a quantity with four complex com-
ponents Z°, Z', Z2, Z*, its complex conjugate Z, being a twistor of

O], related to Z* by

valence [1

Z_0=Z—2—, Z—]_:ZE, H Z__Z:—Z_O, 232—5' (2.4:)

(When the bar extends only over the kernel symbol, this refers to the
twistor complex conjugation operation. When the bar extends over
both the kernel symbol and its index, then this means simply the
complex conjugate of the complex number involved.) The twistor Z*

+ The primed index letter A’ must be regarded as a distinct letter from A4,
so that no contraction is implied in X44'. Under complex conjugation, unprimed
indices become primed and primed indices become unprimed.
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is called right-handed, left-handed, or null respectively, according as
the scalar . o . L
VAV RESAVARS AYVARS AV AR AVA (2.5)

is positive, negative, or zero. (The summation convention will be
employed throughout.) A null twistor Z* describes a null straight line
Z in M according to the scheme:

Z0:2V:722%: 7% = du.dZ: il dl — wvdu:il du — iudl (2.6)

where u, v, { are coordinates [cf. (2.2), (2.1)] of some point P on Z and
du:dv:d{ define the direction of Z. Since Z is a null line we have, by
(2.3) )

dudv=d{d¢ (2.7)

Hence Z*, being invariant under 2* — 2 + kda*, is independent of the
choice of P on Z. By (2.7), we can also write

Z0:ZV: 2% 728 = Al dviil dv — v d {4l dl — iudv (2.8)

Note that it is Z* up to a complex factor of proportionality which
uniquely corresponds to the line Z. When Z° = Z' = 0, we do not get
a finite line in M, but rather a generator of the null cone at infinity
for M. If we admit these lines af infinity as part of the conformal
structure of M (‘compactified’ Minkowski space-time), then a null
twistor Z* (up to proportionality) only fails to define a unique null
line in M if Z* = 0.

If X* and Y* are null twistors, defining null lines X and Y in M,
respectively, then the condition for X and Y to meet (possibly at
infinity) is

X*Y,=0 (2.9)
(This is, of course, the same as Y*X, = 0.) If X and ¥ do meet, at P,

say, then any twistor Z* which represents a generator of the null cone
with vertex P has the form

7% = \X* 4 pY® (2.10)

This is necessarily null, by (2.9). If X and Y ‘meet at infinity’ (but do
not both lie at infinity) then the null cone becomes a null hyperplane,
with vertex P on the null cone at infinity. If both X and Y lie at
infinity, then P becomes the vertex, I, of the null cone at infinity
itself. Thus any point P in M, including those which lie at infinity,
can be represented in twistor terms by a linear set of the type of (2.10).

In fact we can use the twistor PP = X*YB _ ¥ X8 of valence [(2)],
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to represent such a linear set, if desired. We can even represent any
point of complexified Minkowski space-time M* by a linear set like
(2.10), but where not all the Z* are null.{

We have, available, two alternative geometrical pictures for the
description of phenomena (Fig. 1), namely the M-picture (which is
the normal space-time description) and the C-picture, the space C

c* : SN

M -PICTURE C-PICTURE

Figure 1.—The M -picture and C-picture representations of the twistors X*, Y*
and P* = X* VP-Y*X# where X*X = Y*Y,=0=X*Y,.

being the three-complex-dimensional projective space of propor-
tionally classes of twistors Z*, of valence [é] As a real manifold, the

space O is six-dimensional. A five-real-dimensional submanifold N
(topology 82 x §%) of ' defines the null twistors Z* (Z*Z, = 0). The
removal of N from C leaves two disconnected open subsets C* and C~
(each with topology S% x E*) of C, defining, respectively, the right-
handed (Z*Z,>0) and left-handed (Z*Z, < 0) twistors Z*. The
manifold N may be thought of as the space of null lines in M (com-
pactified, so M has topology S* x §%). We may refer to C* and C~ as
spaces of ‘complexified’ null lines in M, but we must bear in mind
that this ‘complexification’ process only increases the (real) dimen-
sionality of the null line system from five to six. The points of M are
represented in the C-picture as complex projective lines (topology S%),
which lie entirely within N. A projective line P, in C, which does not

t In fact, M* is just the Grassmannian (or Klein representation) of projective
lines in the complex projective three-space C. (See, for example, Todd, J. A.
(1947). Projective and Analytical Geometry. London; Semple, J. G. and Roth, L.
(1949). Introduction to Algebraic Geometry. Oxford.
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lie entirely on N represents a point of the complexified space M*, for
which the coordinates x* are not all real. In fact, the imaginary part
of 7 is spacelike, null, or timelike, respectively, according as P inter-
sects N in a one-real-dimensional region (a curve: topology S?), in a
point, or not at all. If null or timelike, the imaginary part of 2 is
future-pointing or past-pointing according as P lies in Ct U N or
C-UN.

A twistor W, of valence [ﬂ defines a complex projective plane W

in C (a four-real-dimensional submanifold of C), namely the set of
points Z, of C, satisfying

W, Z*=0 (2.11)

Conversely, the plane W defines W, uniquely up to proportionality.
Now the plane W meets NV in a three-real-dimensional set of points in
the C-picture. These represent, in the M-picture a three-dimensional
system of null lines (a null congruence). Such a congruence will define
W uniquely. When W, is null (W, W*=0), the W-congruence is
simply the system of null lines in M meeting the null line W (with
coordinates W?). When W, is right-handed (W, W* > 0) [resp. left-
handed (W, W* < 0)], the W-congruence is a system of null lines in
M, one through each point of M, which fwists about every point in a
right-handed [resp. lefé-handed] sense (a Robinson congruence). Thus,
by invoking twistor complex conjugation, we can represent any

. 1 Lo .
twistor Z* of valence [ 0], up to proportionality, whether Z* is null or

not, by a (generally twisting) congruence of null lines in M, namely
that defined by W, = Z,.

We may think of twistor complex conjugation as defining a duality
correspondence in the projective space C' (a Hermitian correlation).
To any point Z in C corresponds a unique ‘polar’ plane Z; to any
plane W in C corresponds a unique point W (the ‘pole’ of W). The
point Z lies on the plane W if and only if W lies on Z. The set N
consists precisely of those points Z which lie on their ‘polar’ planes Z.
Dually, the plane W ‘touches’ N if and only if it contains its ‘pole’ W.
Similarly, a projective line P in C has a uniquely defined ‘polar’ line P;
Z lies on P if and only if P lies on Z. The correspondence P «» P
between lines in the C-picture represents, in the M-picture, precisely
the correspondence between a point and its complex conjugate in the
complexified space M *. The real points of M*, namely the points of M,
are represented in the C-picture by the lines lying entirely on N.
These are just the lines for which P = P. More generally, the complex



70 ROGER PENROSE

conjugation operation will apply to any twistor K"‘ﬁ ";‘75 of general

valence [q] The result is a twistor Ky B ¢ of valence [q ], where the
P

labellings of the 0 and 1 components are interchanged with those of
the 2 and 3 components on complex conjugation in the manner of

(2.4); e.g. K% 1y = K230 etc. In each case, any geometrical inter-
pretation for KZB “%in the C-picture will give rise to a corresponding
dual interpretation for Kfg 7y

The allowable twistor transformations, other than those which

involve a complex conjugate operation or a space or a time reversal
in the M -picture, are given by

G A T I R (2.12)

where
tg*t,f =0,% =Ig*t.P; |t =1 (2.13)

Because of the twistor complex-conjugation rule (here applied to £g*),
it follows that the group of ¢g*-matrices satisfying (2.13) is just
SU(2,2). (The Hermitian form (2.5) has signature (4, +, —, —).) In the
C-picture, the transformations (2.12) (regarded as active trans-
formations) are simply the projective transformations of ¢ which
leave N invariant and do not interchange Ct with C~. In the M-
picture these are the conformal transformations of M continuous
with the identity.

Twistors can also be represented (a little more completely) in the
M-picture in terms of certain spinor fields. If 7', is any twistor of

valence [2], we can define a 2-spinor field r 4(2") by
TAZKA_ixAB'pB, (2.14:)

where Ty = kg, Th = k1, Ty =p%, T5=p'. Then 7, transforms cor-
rectly as a conformal density of weight  as 7', undergoes (2.12). In
fact, a spinor field of the type given by (2.14) (where x4 and p® are
constant) is the general solution of the equation

Veampn="0 (2.15)
where round brackets denote symmetrisation and where
Vp 4 = 0/0x4F (2.16)

(so, equivalently, V¥4 = 9/0x (). The field 7, gives a conformally
invariant M-picture realisation of the twistor 7', up to a multiple of
+1, 44. (This fourfold ambiguity arises because the spinor field =4
picks up a factor 44 as it crosses the null cone at infinity. Such an
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ambiguity is essential because of the four-valued nature of the
[2]-twistor representation of the conformal group.) Any completely

symmetric covariant twistor S,g. . 4 =S(p...4) also has an M-picture
realization as a spinor field somewhat similar to (2.14). For example,

for valence [g], if (for A,B=0,1) we put 8,45=2~ 5 84 pis=p5,
Saig,pie=v4E (where Sug=8p, 80 Ayp=2Ap,, v¥E =1F4), the
spinor field
045 =Apa — 2ipls Tp o — V'Y B a0 Tppy (2.17)
is of the type of the general symmetric solution of
Ve a0y =0 (2.18)
and represents S,g in a conformally invariant way up to sign +1. A

general (non-symmetric) twistor of valence [5 ] has a representation

similar to (2.17), but only as a many-point field.

1 COMPpiex
analytic

surface

represents
shear-free
nutt
congruence
in

\

oo

Figure 2.—The Kerr theorem.

The geometrical significance to the M-picture of the analytic
structure of the C-picture is best illustrated by the theorem of Kerr
(Kerr, unpublished). Let ¢} be a complex analytic surface in C, so @
is defined by the vanishing of a homogeneous analytic function in the
twistor coordinates Z*. The set @ is four-real-dimensional and inter-
sects IV in a three-real-dimensional region (Fig. 2). This defines a
congruence of null lines in M. Kerr’s theorem states that such a
congruence is necessarily shear-free and conversely that any shear-free
congruence of null lines in M is obtainable in this way (or as a limiting
case of such a construction). The shear-free condition states that if a
‘bundle’ of nulllines of the congruence neighbouring a given nullline X,
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and lying (to first order) in the null hyperplane through X, has a
(small) circular cross-section at one point of X, then it also has a
(small) circular cross-section at every other point of X (Fig. 3). (The
Robinson congruences, given when @ is a plane, are particular
examples with this property.) The shear-free condition appears as a
kind of M-picture realisation of the Cauchy-Riemann equations for C.

" CIRCLE <= CIRCLE

Figure 3.—The shear-free condition. (The circles lie, to first order, in the null
hyperplane containing X.)

3. Twistor Description of Zero Rest-Mass Fields

In another paper (Penrose, 1968), the following contour integral
formula was introduced, which expresses the general (analytic)
solution of the spin s, zero rest-mass, free-field equations, for

3
S=O,%,l,§,...

in terms of an arbitrary analytic function of three complex variables
F(Ay s V) :
¢TZZLM§ATF()"@L+/\Z’C+MM/\ (r=0,1,...,2s) (3.1)

(The contour is to surround singularities of ¥ and to vary continuously
with u, v, {.) For, we have 0¢,/0 = 0¢,,,/0w and 0¢,/0v = d¢,.,/0L
(r=0,...,2s — 1), if s >0, and {9%/dudv — 9%/0L 0L}, =0 for s =0.
Writing

¢o=¢oo...o: ¢1=¢10...0, R <}52s=¢11...1 (3‘2)



TWISTOR QUANTISATION AND CURVED SPACE-TIME 73

these equations become, if s > 0,

V4 a5 1=0 (3.3)
where ¢ 4 ; is symmetric (= ¢ 45, . 1)) With 2s indices and
VP'A VP,A (]S = 0 (34‘)

if s = 0. Equations (3.3) and (3.4) are simply the zero rest-mass free-
field equations (Dirac, 1936; Fierz, 1940) for spin s > 0 (Dirac-Fierz)
and spin ¢ = 0 (D’Alembert), respectively.

Thus the free-field equations on ¢ 5 7 are an automatic conse-
quence of the analyticity of F. The converse result that any analytic
zero rest-mass free field ¢, 5 has a representation in the form (3.1)
is also true, but the argument giving the construction of F from
¢ 4... will not be entered into here. We note, in this context, that the
function F' is not, however, uniquely determined by ¢, .. If, for
example, we add to ¥ any function which is regular inside the contour
(for every u, v, {), then clearly the resulting field ¢, ; will be un-
affected. This freedom of choice for F defines a kind of gauge group
(different from the usual gauge group) but which depends on the
positioning of the contour (as a function of u, », {}. The nature of this
gauge freedom will not be discussed here. Nor will certain interesting
features of the representation (3.1), such as the fact that ‘null’ or
‘algebraically special’ solutions of (3.3) can be very readily generated,
by merely requiring that the contour surround only a simple or low-
order pole of I (Penrose, 1968). Instead, two matters of more im-
mediate relevance will be treated, namely the transcription of (3.1)
into a more general twistor form and a topological requirement on the
singularities of ¥ that ensures that the field ¢, , has positive (or,
alternatively negative) frequency. The question of a conformally
invariant Hilbert space norm for fields ¢, ;, given in terms of F,
will be discussed in Section 5.

We note, first, that using the notation (2.6) or (2.8) we can write

_ ZO 'Z3 'Z2
FAu-+ A, L+ ) EF(—? @ZT —327) (3.5)
where _
du + Adl=0=d{+ Adv (3.6)
Set

Z° 73 iz®

77 “ﬁ) (3-7)
Then F(Z*) is analytic and homogeneous of degree — 2s — 2 in Z*.
The twistor Z* represents a null line Z through the point P with

1(2%) = 2, 2,2,2%) = (2
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coordinates u, v, {. The direction of Z is defined by A according to
(3.6). Let X and Y be the two particular null lines through P given
respectively by A= and A = 0. We can assign the twistors X*, ¥*
to X, Y as follows:

(X*) = (3,0,0,—0);  (¥Y*)=(0,—i,{,—u) (3.8)
and set
Z* =) X*4- Y= (3.9)

This is consistent with (2.6) and (3.6), and we have Z! = —i. By (3.7)
and (3.5), we can now write the formula (3.1) as

(X%, ¥%) — %ﬁ § NFOX*+ Y9dN (r=0,1,...,25) (3.10)

The quantities ¢, are here written explicitly as functions of X* and
Y« This is because the spinor components (3.2) are dependent on a
particular choice of spin frame, and although this spin frame was
originally related to the coordinate system (2.1), we can think of X*
and Y%, instead, as defining the spin frame at P. Indeed, we can now
dispense with our original coordinates (2.1) altogether, since the
point P is defined by X* and Y* via

P — X YB . y*XP (3.11)

which serve as the twistor coordinates for P. We can, in fact, enlarge
the domain of the formula (3.10) by dropping the requirement that
X* and Y* have the special form (3.8), retaining merely (for a real
point P) the condition that X* and Y* both be null and satisfy
X*Y, = 0. Keeping the P*8 of (3.11) fixed, the freedom of choice for
X*and Y*is given by the ‘spin transformation’:

X = pX*+6Y%, Ve=rX*4+ 0¥® (3.12)
with
pw—or=1 (3.13)
where inversely
X* = wX*— oY, Y*=—1X%4 p¥* (3.14)
Substituting (3.14) into (3.10), putting
A= (pp + 7)/(op + w) (3.15)

and keeping the contour ‘fixed’ (i.e. so that the same values of f(Z*)
are involved after the substitution), we get

8% %) = 5 § (ot 7o+ ) R+ T (3.16)
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When expressed in terms of

BRI = o § R+ P (r=0,1,..,29) (317
(3.16) yields the transformation law for a D(s,0) representationt of
the homogeneous Lorentz group at P. This is precisely what is
required of the formula (3.10), in order that it should correspond to a
field ¢, 5 correctly transforming under local Lorentz transforma-
tions. It is for this purpose that the function f, as defined in (3.7), is
chosen to be homogeneous of degree —2s — 2. With the original ex-
pression (3.1), the role played by the value of s does not emerge. The
full twistor expression (3.10), on the other hand, contains the entire
transformation behaviour of the field.
We may note the general twistor form of the equations (3.3):

a‘ﬁr - a¢r+1 —
axe=gye =01...,25—1) (3.18)

and, for s =0, of (3.4):

Py 0%¢o
0X*0YP oY*0XP

(The twistor ‘wave equation’ (3.19) applies also, of course, if s >0
with ¢, replaced by any of the ¢,.) Each ¢, is separately homogeneous
of degree —(r + 1) in X* and degree —(2s —r + 1) in Y%, so that by
Euler’s theorem

X= g}é’m =—(r+1)¢, Y* g;’m =—(2s—-r+1)¢, (3.20)
Thus (3.18) or (3.19), together with (3.20), are the fwistor versions of
the zero rest-mass free-field equations. Note that in twistor space, a field
(with spin) is regarded as a two-point function. The line P in the
C-picture which connects the fwo points X and Y (of C) corresponds,
in the M-picture, to the point P at which the field ¢, 7, is evaluated,
this being the intersection of the two null lines X and Y. The depend-
ence of the ¢, on the positioning of the points X, ¥ on P (C-picture)
corresponds to the spin structure of the field (this being given, in the
M -picture, by the dependence of ¢, , on choice of spin frame at
the point P—as defined by X%, Y*). Note that if s =0, then ¢ is
actually independent of X*and Y* except in so far as they define P*#

(3.19)

T See, for example, Ya Liubarski, G. (1960). The Application of Group Theory
in Physics (trans. Dedijer, S.). Pergamon Press, New York; or Streater, R. F.
and Wightman, A. 8. (1964). PCT, Spin and Statistics and Al That. W. A.
Benjamin, New York.
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according to (3.11). (This followst from X*0¢o/0Y* = 0 = Y*0¢,/0 X%,
which is a consequence of (3.19) and (3.20).) This simply reflects the
scalar nature of the field in this case.

The formula (3.10) can also be applied when X* and Y* are not null
and need not satisfy X*Y,=0. Then the line P of the C-picture,
which connects the two points X and ¥ [P*? given as in (3.11)], does
not lie on N and so represents a complex point P € M* in the M-
picture. The M-picture realisation of (3.10) in its full generality is
thus a complexified zero rest-mass field. It is this fact that enables us
to give a direct C-picture interpretation of a condition which ensures
that ¢, 5 is a positive (or alternatively negative) frequency field.
(We recall that any C-picture property has an interpretation in terms
of the real space M. Thus, even the complex points of M* can be
interpreted in terms of real structures (Penrose, 1967a) in M. It is
interesting to note, in this context, that much of the structure of
f(Z*) has a very direct ‘real’ interpretation in the M-picture. For null
Z* we may think of f(Z*) as defining a function on the space of null
lines of M, although the dependence of f on the scaling of Z* must be
borne in mind. This function enters directly into defining the field
é 4 ..z at real points P and also at some complex points P.)

Let us consider the nature of the condition of ‘positive frequency’
as applied to a field ¢4 ;. I shall be concerned only with fields which
are non-singular throughout the entire (conpactified) space-time M.
This will imply, in particular, that the field enjoys suitable asymptotic
behaviour (i.e. in the neighbourhood of the null cone at infinity),
yielding the ‘peeling-off’ property for the field (Penrose, 1965). In
this context we must take into account the phenomenon of Grgin
(1966): for a free-wave field we must expect the field to jump by a
factor (41)2+2 as we cross the null cone at infinity. Owing to the four-
valued nature of the M-picture realisation of twistors, this is indeed
the type of behaviour that we should expect from (3.10). I shall, in
fact, regard the field ¢, ., as being appropriately ‘analytic across
infinity’ only if it possesses the correct Grgin discontinuity there.
Then the fields under consideration will be imploding-exploding free-
waves which tail off suitably towards infinity in all directions. In
twistor terms, this condition is simply that ¢,(X* Y*) should be
regular for all null X%, Y% for which X* ¥, =0.

We can imagine the field ¢ .. decomposed into plane waves. The
various amplitudes of these waves will be given by the null-datum
(Penrose, 1963, 1967b) for ¢, . 1 at all the various points on the null

1 See, for example, Hodge, W.D. and Pedoe, D. (1952). Methods of Algebraic
Geometry, Vol. IT, Cambridge University Press.
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cone at infinity. The null-datum for ¢, . ; at a point P, for a null
hypersurface containing a null line X through P, is simply

¢ = (X% PF) = $o( X7, T%) (3.21)

where P*8 is related to X%, Y* by (3.11). (The fact that ¢q(X*, ¥*)
depends on X* and P*#, and not on Y%, is a consequence of (3.14)
and (3.16), with 0 =0, w=1.) The amplitude for the plane-wave
component of ¢, 5 corresponding to a fized null direction is given
by (3.21) where X* is kept fixed and P*# is allowed to vary. Here X is

Figure 4.—A null hyperplane of constant amplitude, in a plane wave, has a
vertex P on the null cone at infinity. The amplitude is measured by the complex
null datum ¢(X*; P*5).

the generator of the null cone at infinity which corresponds to this
fixed null direction (Fig. 4); P is a variable point on X which defines a
null hyperplane of constant amplitude for the wave. (P is the ‘vertex’
of this null hyperplane.)

We must express the condition that the complex quantity ¢, as a
function of the real variable defining the position of P on the line X,
has positive frequency. Let us imaginet X as a finite line. (The
concept of a “positive frequency function’ defined on a null line is, in
fact, invariant under restricted conformal transformations of M,
since these give the restricted projective group on a real null line.}

1 To be more precise, ‘imagine ...’ can be interpreted to mean ‘make a

conformal transformation on M, continuous with the identity, so that after
the transformation we have ...". Thus, we are at liberty to choose coordinates
so that certain points at infinity receive finite coordinates.

1 See Gel’'fand, I. M., Graev, M. I. and Vilenkin, N. Ya. (1966). Generalized
Functions V : Integral Geometry and Representation Theory. Academic Press,
New York and London.
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But this is not really needed here, since we can imagine I to remain
at infinity.)

For simplicity, imagine our origin of coordinates to be situated on
X. Then the real points of X have position vectors of the form ui”,
where u is a real number and I° is a real future-pointing null vector.
Along X, we now have ¢ as a complex function of the real variable u.
This defines the amplitude of our plane-wave component. The wave
has positive frequency if this function can be extended to a complex
analytic function of the complex variable  + tw which is regular for
w > 0. (The regular behaviour at infinity of ¢ will be taken care of by
the fact that we are really concerned with entire compact manifold M.)
Now, the position vectors (w -+ sw)l® with w > 0, have null future-
pointing imaginary parts. Therefore (cf. Section 2) they define points
P of M* which correspond in the C-picture, to lines lying in N U C*.
If $(X*; P*F) remains regular for these points, then we shall have the
required analytically extended function. (The fact that ¢ is a complex
analytic function of  + w follows from the general analytic properties
of the O-picture, but this can also be seen explicitly if we go back to
the definition of ¢, given by (3.1), where u is allowed to be replaced
by the complex variable % + 7). Thus, if we can construct ¢,(X*, ¥*)
which is regular whenever the line joining X and Y lies in N U CF, we
shall certainly have constructed a field of positive frequency. (In fact
all fields of positive frequency will have this apparently more general
property, but the matter will not be entered into here.)

Now let us consider a condition on f which ensures that ¢, is of this
type. We suppose, in fact, that the points Z in N U CF, for which
f(Z?) is singular, can be contained in two disjoint closed proper subsets
S.,S_of N U C*. For each line P, in C, which intersects both of 8 ,
we shall choose our contour so as to surround the whole of P N S,
once in a positive sense (on the Riemann sphere S* which represents
the points of P). Thus, the contour correspondingly surrounds the
wholeof P N S_ once in a negative sense. (This can always be arranged
since P N S, and P N S_ are disjoint closed sets. The contour need not
be a connected curve but may consist of several loops.) If either of S,
or §_ is vacuous the situation becomes trivial and the field ¢, would
have to be zero. I shall suppose that ¢, is, in fact, not identically zero.
Then at least some lines in C must intersect both of §.. In fact, if
P = N U O, then P necessarily intersects both of 8, 8_, since other-
wise every line in N U C* ‘sufficiently close’ to P would share P’s
behaviour and we should have an open set in M * on which ¢, vanishes.
This would imply , = 0, since ¢, is analytic, contrary to hypothesis.

We see that the field ¢, is uniquely determined, for P < N U C*
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(and for certain other P’s also) by the division of the singularities of
S between the two sets S, S_. No more precise specification of the
contour is required. Thus, by the preceding discussion, ¢,(X*, Y*) will
be defined and analytic whenever the join of X and Y lies in N U C,
whence ¢, is necessarily a field of positive frequency. To obtain a field
of negative frequency we need only apply the identical construction
but with O~ replacing C*. We can also generalise the discussion,
somewhat, if we consider functions f(Z*) where the singularities need
be disconnected only in C* rather than in N U C*. The resulting fields
¢, would then not necessarily be regular at all real points P of M.
This would enable us to consider non-analytic fields and distributions
(Green’s functions) on M as boundary values of complex analytic
fields.}

It is natural to ask how general the above construction is, for
positive frequency fields. It appears, in fact, to be as general as one
would wish it to be, but a complete argument is at the moment
lacking. To indicate something of the generality involved, however,
I can exhibit some examples. Let @, and R, be two right-handed
twistors for which every linear combination is also right-handed.
This is achieved by taking @ and R as two points of a line lying
entirely in C* and we have

Q. Q*>0, R,E*>0, Q,Q*RgRF>|Q,R*> (3.22)

The intersection of the two planes ¢ and R (being the ‘polar line’ of
the line joining @, R) will lie entirely in C~. Thus .S =@ N (NuUCH
and S_=R n (N U O0") will be disjoint closed subsets of N u C*
containing the relevant singularities of

f(Z%) = (Qo Z%)\(Rp ZF)~21 (3.23)

Of course (if s > 0) we could allow other negative powers of Q,Z%.
Furthermore, we can form various finite linear combinations of
expressions like (3.23), with differing ¢)’s and R’s. We could also take
combinations of expressions like (3.23), but with polynomials in Z* in
the numerator and higher powers in the denominator. These would all
yield f’s which were algebraic functions of Z*, but we could generate
non-algebraic functions also satisfying the required conditions,
simply by integrating together expressions like (3.23) over some (not
too extensive) domain. That this yields positive frequency fields ¢,
of considerable generality, at least, follows from the fact that in the

T See, for example, Streater, R. F. and Wightman, A. 8. (1964). POT, Spin
and Statistics and All That. W. A. Benjamin, New York.
6
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limit when the inequalities (3.22) tend to equalities, the field generated
by (3.23) becomes the ‘Feynman propagator’ for ¢ 45 5 appropriate
to the characteristic initial value problem.

Finally, it may be mentioned that there is an interesting topological
property of such ‘positive frequency’ singularity sets in relation to
the topology of N, as imbedded in C. I shall illustrate this explicitly,
only in the case of f given by (3.23). As was mentioned in Section 2,
we have N ~ 82 x 83, 0~ =~ 0T ~ 8% x E*. We may regard C* as being
obtained from N by ‘filling in’ each 8% with a cell £*. The complex
plane @ meets N in an S® of the product 82 x 2. The intersection of
Q with C* is an E* of the product 82 x E* which ‘fills in’ this 8.
Similarly, the complex plane R meets N in another 82 of the product
82 x 83 which is again ‘filled in’ by an B* (= R N C%) of the product
82 x E* (= OF). In fact the pencil of planes defined by @ and R (with
twistors Q* + uR¥) generates the entire “filling in’ of 8% x 8% = N by
82 x B*=C*+. Now, from the symmetry between Ct and C-, it
follows that O~ must also “fill in’ N in exactly the same way. However,
this new “filling in’ applies to an essentially different way of expressing
N as 8% x 8® from the one given above. If we consider N as imbedded
in N U C~rather thanin N U C", it emerges that the sets @ N N and
R N N are linked in the sense that any submanifold of C~ which spans
Q N N (i.e. whose boundary is @ N N) must necessarily intersect any
submanifold of €~ which spans B N N. (Furthermore, neither ¢ N N
nor R N N spans an E* in C~.) Thus, we see that a particular topo-
logical structure of the singularity regions of our ‘positive frequency’
function f(Z*) emerges even in the region Z € N. The regions N N .S,
and N N S_twist around one another in a way opposite to the corre-
sponding behaviour for a ‘negative frequency’ function. This is
realised, in the M-picture, as a right-handed twist (for ‘positive
frequency’ f) and a left-handed twist (for ‘negative frequency’ f) for
the null line systems concerned.

+ The reader may be disturbed by this association of a screw-sense in space-
time with the notion of ‘positive frequency’ for a zero rest-mass field. In the
present formalism, the opposite association would have been achieved had we
been concerned with a spinor field .5 ;. rather than ¢, ;. Withhalf-odd
spin fields this association of a particle helicity with the field is familiar. Here,
this must be applied also to integral spin. Thus ¢, describes the ‘photino’ (or
positive helicity photon) while & -5 describes the ‘anti-photino’. Interactions
will readily convert ‘photinos’ into ‘anti-photinos’.

The fact that the use of twistors entails an interrelation between ‘+¢’, ‘right-
handedness’, and ‘future-orientation’ will be evident from the interpretation
of the lines in O+ as points of M* with position vectors having future-pointing
imaginary parts, and the interpretation of points of C*t in terms of right-
handed Robinson congruences.
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4. Twistors for Curved Space-time

We have seen, in Section 3, the importance of the complex analytic
structure of the C-picture in the treatment of zero rest-mass fields.
On the other hand, it is (apparently) precisely this complex analytic
structure which is destroyed by the presence of conformal curvature
(i.e., gravitation) in the M-picture. For Kerr’s theorem tells us that
the Cauchy-Riemann equations for the C-picture have an interpreta-
tion as a ‘shear-free’ condition on null line systems in the M-picture.
But when a shear-free ‘bundle’ of null lines (geodesics) enters a region
of conformal curvature in space-time it will emerge on the other side
possessing shear, in general. Thus, if M is conformally curved, we
cannot interpret ‘shear-freeness’ as referring to null lines in their
entirety, but only to null lines ‘in the neighbourhood of a point’. We
may think of a C-picture as referring accurately only to a ‘sufficiently
small’ neighbourhood of a point of M, for which the conformal curva-
ture can be neglected. But we would like, also, to be able to discuss
the interconnections between different neighbourhoods, so that the
real effect of conformal curvature (that is, of gravitation) on C-picture
structure can be investigated. It will emerge, in fact, that what is
required is not a different C-picture for each ‘neighbourhood of a
point’ in space-time, but rather one C-picture for the whole of space-
time (roughly speaking) whose ‘complex analytic structure’ appears to
‘shift’ as we move about the space-time, and which possess a (weaker)
symplectic structure which does not shift. This will be the classical
C-picture for M which we consider in this section. The passage to a
quantised theory (Section 5) which this classical C-picture structure
suggests will, in a certain sense, reinstate the full C-picture analyticity.

Let us suppose that M is a four-dimensional manifold with a
pseudo-Riemannian metric ds® = g,,da*da?, of signature (4, —, —, —),
and which possesses suitable global properties. These global restric-
tions on M will not concern us particularly here and we may, if
desired, simply restrict our attention to some suitably well-behaved
open submanifold of space-time. The idea will be to represent the null
geodesics of M as the points of some five-dimensional manifold N.
The invariant structure of N will be defined in terms of properties of
null geodesics in M which do not refer to particular points on these
null geodesics, but which can be read off by examining the geodesics
at any of their points. For example, the property of a system of null
geodesics that they should generate a null hypersurface,t will turn out

T That is, so that the tangent 3-space to the hypersurface is tangent to the

light cone. This property ‘propagates’ in the sense that it holds globally (except
for singularities) if it holds on any space-like cross-section of the hypersurface.
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to represent an aspect of the invariant structure of N¥. On the other
hand, the property of two null geodesics that they intersect, will not.
It will emerge that the invariant structure of N will be most easily
describable if we regard N as a submanifold of a six-real-dimensional
manifold C. In this sense, the classical C-picture will have value for the
description even of conformally curved space-time.

The discussion will be given here in terms of certain idealised space-
times in the first instance, namely plane waves—or, more generally,
plane-fronted waves (Brinkmann, 1923; Robinson, 1958)—for which
the amplitudes can be given by Dirac delta functions. The idea will
then be to regard the effect on the C-picture, of a general region of
M -picture curvature, as a (non-linear) composition of effects of such
plane-fronted waves.

The general plane-fronted wave has a metric which can be put into
the form

ds? = 2(du + R(v,{, {) dv)dv — 2d{dL (4.1)

(R being real). The non-vanishing curvature tensor components for
the metric (4.1) are defined by

92RJL?,  O°R/OLOL, @R[l (4.2)

The metric satisfies Einstein’s vacuum equations (and so represents
a plane-fronted purely gravitational wave) if

0*R[0{a =0 (4.3)

but we shall not be concerned with implications of (4.3) here. If (4.3)
is not imposed, then the metric (4.1) covers the more general situation
of a combined plane-fronted gravitational-electromagnetic-neutrino
wave.

If R = 0 over some range of v, then we have a region of Minkowski
space-time [compare (2.3)]. If R is non-zero only within some finite
range of v: v; <v < v, then we have the situation of a ‘sandwich
wave’. In the idealized situation where the wave is allowed to become
infinitesimal in duration (say, v, v, — 0) while still producing a non-
zero resultant effect, the function R becomes a delta function in v:

R(»,{,0) = 8(v)r(L,]) (4.4)

With the substitution (4.4), the form of metric (4.1) does not satisfy
the conditions normally required (Bruhat, 1959) for a space-time with
delta functions in the curvature, since we here have a delta function in
the metric tensor components. Under normal circumstances this would
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lead to non-allowable products of delta functions in addition to
derivatives of delta functions in the curvature. However, in the
present situation, the space-time represented by (4.1), (4.4) is still
allowable. Tt is, in fact, possible to make a coordinate substitution so
that the new metric tensor components are C° functions of the
coordinates. Then the fact that this leads only to a simple delta
function (C~?) type of curvature becomes more obvious. But for our
purposes the form (4.1) is more satisfactory since it leaves the flat
portions of the space-time in the required Minkowski form (2.3). The
(delta function) curvature components are then obtained from the
substitution of (4.4) into (4.2).

Figure 5.—The two Minkowski half-spaces are joined in a ‘warped’ fashion along
the null hyperplane K. The continuation Z* of the null line Z can be defined in
terms of the null hypersurface L, which continues as L*.

We can describe the resulting manifold in the following ‘scissors
and paste’ terms. We divide ordinary Minkowski space-time (metric
ds? = 2dudv — 2d{d{) into two portions M~, M+ by the removal of the
null hyperplane v = 0. Thus M~ is given by the portion v < 0 and M*
by v > 0. We wish to join M~ and M* together again, inserting a null
hyperplane K as their common boundary, but in such a way that the
imbedding of K in each of M * appears ‘warped’ as viewed from the
other (Fig. 5). More specifically, ¥~ U K and M+ U K each have the
normal Minkowski metric (2.3), but the two halves are joined in a way
not consistent with a four-dimensional Minkowskian metric structure
at K. The three-dimensional metric induced on K by its imbedding in
each of the two halves is the same, however. (A somewhat analogous
two-dimensional example is obtained if we imagine two ordinary
cones joined base to base. The two surfaces are intrinsically flat, but
a delta function in the curvature resides along the edge at which the
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cones are joined.) For convenience, we use coordinates %, v, { in M~
and u*, v*, {* in M*, the entire manifold M being defined by:

M- UK: ds*=2dudv— 2d{dC
(v < 0 with %, { unrestricted ; u real)
Mt U K: ds®=2du*dv* — 2d{*dT* (4.5)
(v* > 0 with »*, {* unrestricted; u* real)
K: w¥=v=0, *={ w=u—rLD

Thus, the generators of K are ‘shunted down’ by an amount 7(Z,{)
when we pass from M~ to M. Equations (4.5) are just another way
of expressing what is meant by the metric (4.1) when the substitution
(4.4) is made.

The manifold M possesses two regions M~ and M+ which are exactly
flat. Thus, we can construct a C-picture in terms of either of these
regions. A nulllinein M~ can be given twistor coordinates Z* according
to the scheme (2.8); similarly a null line in M can be given twistor
coordinates Z** according to the ‘starred’ version of (2.8). But any
null line in M~ which intersects K (i.e., which is not parallel to the
null direction in K) will emerge as the uniquely defined null line, in M,
for which the two portions constitute a ‘null geodesic’ in M. We may
think of such a ‘null geodesic’ as resulting when a limiting process is
applied to null geodesics for spaces (4.1), as the function R(v,{,{)
approaches the form (4.4). More conveniently, there is, however, a
direct geometrical construction of these ‘null geodesics’. This arises
owing to the fact that if null geodesics generate a null hypersurface
in one portion of a space-time manifold, then they must continue to
generate a null hypersurface in any other portion of the manifold. We
must retain this property for the ‘null geodesics’ in M (as follows from
the above limit construction). Thus, if the null line Z in M~ U K|
belongs to a null hypersurface L in M~ U K, the emergent null line
Z*in M* U K must belong to a corresponding null hypersurface L*
inM+*uU K.Werequirethat: ZN K=Z*NnKand LN K=L*N K.
This serves to define Z* uniquely in terms of Z, because Z* N K fixes
a point on Z* while L* N K defines a tangent 2-plane element at
Z* N K which must be orthogonal to Z*, thereby fixing the direction
of Z*.

Let us see this explicitly in terms of (4.5). A twistor Z%, describing
the null line Z according to (2.6), (2.8), satisfies

Z%df = Z' du, Z%dy = Z'dL (4.6)
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Z*=4lZ1, VARSI VARV /A (4.7)

(Here, the point P is chosen to be Z N K, so that » = 0.) Similarly, the

starred versions of (4.6), (4.7) will also hold. In the case of (4.7),
employing (4.5) we get

VATV /ARS Z%3 = LZ*0 — j(u —r) Z*! (4.8)

In order to write the starred version of (4.6) in terms of du, dv, d{ (i.e.,

to find the direction of Z* given Z) we need to use the fact that Z* is

orthogonal to the same vectors lying within K, at Z* N K, as is Z.

Denoting a direction at Z N K by éu:6v:8{ in the u, v, { system, we

have §v = 0 if the direction is to lie within K. For the direction to be
orthogonal to that of Z, we have

Sudy -+ 0.du=8Ldl + 8Zd¢ (4.9)
whence, by (4.6), .
Su = SLZO|ZT + 8TZ°| 71 (4.10)
The starred version of this yields, with (4.5),
Su — %35 — —Z—g_az AL VN AL VAL (4.11)

Equations (4.10) and (4.11) must represent identical conditions on
8u:8¢: 87 since they must give the same 2-plane element. Hence,

VAR Z1=Z”‘°—|—Z”‘1g—g:Z”‘1 (4.12)

Equations (4.7), (4.8) and (4.12) define the ratios of the Z** com-
ponents in terms of the ratios of the Z* components, by elimination
of £ and . With the most convenient choice of scale factor, we can set

Z*°=Z°——Zla—i, Zxl =71
¢
Z*2 =72 VARE VARV /A (T—Z—g—g) (4.13)
where { = —Z?|Z'. Setting
Wz*7,) = |Z|2r (4.14)
we can write (4.13) comprehensively as
VALY AN aazii (4.15)

The transformation (4.15) has been derived for the effect due to a
plane-fronted impulsive wave situated along the particular null
hyperplane v = 0. But because of its twistor form, (4.15) will clearly
apply (with suitable %) to any impulsive plane-fronted wave, The
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function h(Z* Z,) of (4.14) is special in that it involves only the
coordinates Z?, Z! and their complex conjugates. Putting

A%*=(1,0,0,0) and  B*=(0,0,0,1) (4.16)
we can express this as the fact that % is a function of
A4,72* B, 7%,  A*Z,B*Z, (4.17)

only. More generally, we could allow % to be any real differentiable
Sfunction of variables of the type (4.17), so that & is homogenecous of
degree unity in Z* and also in Z,, where we allow A* and B*to any pair
of fixed null twistors satisfying 4% B, = 0. Note that 0k/0Z, is a linear
combination of A* and B* whence

oh oh
7 T 0 (4.18)
Note, also
o%h
3,00 (19

For the particular case considered in detail above, it is the hyper-
plane v = 0 which is generated by the null lines given by B* 4 i{A%.
In the general case, these null lines would be just the generators of
the null cone containing two intersecting null lines 4 and B [cf.
(2.10)]. In the above case (4.16), 4 is at infinity so that the cone
becomes a hyperplane. In fact, unless one of the generators of the
cone s at infinity, (4.15) does not represent a pure impulse wave in a
pseudo-Riemannian space-time but only in a conformal space-time.
We shall ignore this distinction for the present purposes. There is,
however, one special situation which is of particular note, namely
when both A and B are at infinity, so that the null cone they define
becomes the null cone at infinity itself. In this case we may regard the
transformation involved in (4.5) as yielding a supertranslation of the
Bondi-Metzner-Sachs groupt and (4.15) is its twistor equivalent.

Observe that (4.18) (together with reality : = k; and homogeneity:
Z*0h|0Z* = h) implies that

z% 7% =77, (4.20)
so that the scaling we chose for Z**, in order to arrive at (4.15), in
fact preserves the twistor ‘norm’. However, (4.15) does not preserve
the twistor scalar product Z*Y,. In particular, if Z*Y, =0 (so the
null lines Z and Y, in M~ belong to a portion of a null cone), then in
general Z** Y*, # 0 (so that the emergent Z*, Y* in M+ do not belong

T See Sachs, R. K. (1962). Physical Review, 128, 2851.
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to a portion of a null cone). This is closely related to the non-
analyticity, in Z%, of (4.15), since it illustrates that a (shear-free) null
cone picks up shear, in general, as it passes through an impulsive
plane-fronted wave. (The only cases of a transformation (4.15)
yielding a complex analytic twistor transformation would be given
when % is bilinear in Z*, Z,. In this case the conformal curvature in the
impulsive wave would vanish and M would be conformally flat.)

We note the important fact that whereas we originally defined the
transformation Z* — Z** for null twistors only (since the discussion
was given in terms of null lines) we were led to the transformation
(4.15) which applies equally to non-null twistors. (We may, perhaps,
think of (4.19) as defining kA away from N once the values of h on N
are given.) Thus, the identity of a twistor can apparently be main-
tained even as we pass through a region of conformal curvature. The
geometrical significance of a non-null twistor becomes altered, how-
ever. The representation of such a twistor by a Robinson congruence
(cf. Section 2) cannot be maintained in the presence of conformal
curvature, since this representation is based on the condition
Y*Z, = 0,for anullline ¥ to belong to the congruence Z. Nevertheless
the entire C-picture for M does seem to retain a significance. We may
think of a single point Z in the C-picture as being assigned twistor
coordinates according to two different (non-analytically related)
schemes, namely that which assigns the coordinates Z*, and that
which assigns Z**. Thus we have two different complex analytic
structures for ¢’ and two different scalar products, depending upon
whether we view it from M~ or from M™.

The space-time M that we have just been considering is, of course,
especially simple. We cannot expect to get such a complete twistor
structure for a space-time M which is, perhaps, everywhere con-
formally curved. However, the purpose here is somewhat different.
We may imagine that the effect of a region of general conformal
curvature can, in some way, be composed of effects like that produced
by an impulsive plane-fronted wave. We are thus led to consider the
group J of transformations of twistor coordinates, which is generated
by the transformations like (4.15). The invariant structure of € will
then be precisely that which is left invariant by 7.

It is convenient to consider the infinitesimal transformations of the
form (4.15). Denoting the infinitesimal change in the twistor co-
ordinates Z* by 8Z%*, we can write

oH
SZ“= .-‘—_‘— 4:21
A (4.21)
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where _
H=H(Z*,Z,) (4.22)

is real and separately homogeneous of degree unity in Z* and in Z,:

- oH 0
— N/ A i
H=H=17 37 Zy 37, (4.23)
Thus, we have
7 .oH
8 =—inm (4.24)
It follows now that B
MZ*Zy) =0 (4.25)

so that the invariance of the twistor norm follows without any other
conditions on H. We need not assume that H is of the special form
that was required for %, namely of being a function of variables (4.17),
with its consequence (4.18). Indeed, neither (4.18) nor (4.19) can be
expected to apply to a general H defining an infinitesimal element
of 7. This is because the Poisson brackets:

[y X] = i ams no — b o =ps (4.25a)

do not preserve (4.18) or (4.19).

The Poisson brackets [H,G] define the commutator of the two
infinitesimal transformations defined by H and by . Note that
[H, Q] satisfies the reality and homogeneity conditions (4.23) provided
H and @ both satisfy these conditions. The same applies to the sum
H + @. Thus, these operations define a Lie algebra .Z. It is clear that
2 will contain the Lie algebra of infinitesimal elements of 7. (Very
possibly & is no larger than this.) In any case it will follow that any
structure on C which is invariant under % will also be invariant under
T, i.e., be part of the invariant structure of C. The converse is an open
question at present.

Note that we can write (4.21), (4.24) as

$z*=[2Z*,H], 8Z,=Z,H] (4.26)
and, more generally, we have
& = [, H] (4.27)

for any function ¢ of Z%, Z,. Thus, if [, H] = 0 for all H satisfying
(4.23), then ¢ is part of the invariant structure of C. By (4.25), a
particular case would be ¢ = Z*Z,. To obtain more of the invariant
structure of ¢, we must consider ‘tensor fields’ on C. In particular,



TWISTOR QUANTISATION AND CURVED SPACE-TIME 89

there are certain invariant differential formst on C. Noting that, by
(4.21),

dzﬁ (4.28)

S — d (aﬂ) . 0°H o2 H

V/i
oz,) ' o7Fiz, o 0207,
and using the fact that o |0ZFf and 0H/ BZB are respectively homo-
geneous of degrees one and zero in Z,, we obtain

8(Z,dZ*) =0 (4.29)

Thus Z,dZ* is part of-the invariant structure of C and, hence, so also
is its exterior derivative d(Z,dZ*) =dZ, A dZ* =0, i.e.

8dZ, n dZ* =0 (4.30)

The quantity dZ, n dZ* is the usual invariant surface element
associated with the ‘Hamiltonian’ equations (4.21), (4¢.24). By taking
exterior products of these forms, higher degree invariant quantities
can be (rather trivially) generated, e.g. Z*dZ, A dZF A dZg;
Z,2°dZP  dZg. The T-form Z*dZ, n dZP n dZgn dZY N dZ, 1 dZF A dZ,
that can be bullt in this way is dual to Z*9/0Z*. The invariance of thls
operator follows more directly from

v O 0
[Z EZ“’H] Z“—a-ZE[gb,H] (4.31)
which we can interpret as
o a o a
d ( azoc) (Z 6Z°‘) 8 (4.32)

This is the condition for invariance of the operator Z*9/0Z* under 8.
The most important quantities belonging to the invariant structure
of C can be collected together as follows:

Z*7, (4.33)
72*dZy,  Z,dZ* (4.34)
dZ* n dZ, (4.35)

L0 =
2 s Z“a—Z_a (4.36)

It is of interest that all these quantities have some direct significance
in the M-picture. It is the vanishing of (4.33) which states that the
twistor Z* represents a real null line Z in M. The division of C into the

T See footnote on page 92.
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three parts C~, N, O is invariant, being given by Z*Z, > 0, =0, < 0,
respectively. However, the points of C* and C~ do not appear to have
any very direct invariant geometrical interpretation in M. As for
(4.34), we may think of Z* and Z* + dZ* as defining two infinitesimally
neighbouring points Z and Z' in C. If Z and Z’ are both on N, then in
the M-picture, Z and Z' are infinitesimally neighbouring null lines and
we have Z*Z, = 0 and Z*dZ, + dZ*Z, = 0 (neglecting quantities of
second order in dZ*). Thus, Z*dZ, is pure imaginary. Now, the
imaginary part of Z*dZ, is positive or negative according as the null
line Z' lies just to the future or just to the past of Z. If Z*dZ, = 0, then
a null hypersurface can contain both Z and Z' as neighbouring genera-
tors. Now consider (4.35). We may think of Z% Z*+dZ* and
Z* 4 d' Z* as defining three neighbouring null lines Z, Z" and Z" in M
provided these three twistors are all null. Let us suppose that this is
so, and also that any pair of Z, Z', Z" can belong to a null hyper-
surface, i.e. 2°Z, =0, Z*dZ, =0, Z*d'Z, = 0. Then the condition
that all three of Z, Z', Z” can belong to one null hypersurface (i.e.
that there be no net rotation of Z, Z’, Z" about one another) is
dz*d'Z, — d'Z*dZ, = 0, which in the notation of differential forms
reads dZ* A dZ,, = 0. The form dZ* A dZ, defines a symplectic structure
on C. Finally, the invariance of (4.36) is a necessary prerequisite for
the C-picture to make geometrical sense at all. For, we have tacitly
assumed that it is legitimate to think of C' as a six-real-dimensional
manifold, the points of which are defined by the ratios of the complex
coordinates Z* The fact that the relation between Z* and AZ* is
preserved under any transformation in % is implicit in the fact that
the (degree of ) homogeneity in Z* of a function (2%, Z,) is preserved
under .. The functions homogeneous in Z* are simply the eigen-
functions of the invariant operator Z*0/0Z*.

The above discussion has been centered on considerations of
infinitesimal transformations. We may also consider finite trans-
formations Z* — Z** belonging to J . For such transformations we
must expect that the expression of the Poisson brackets in terms of

72, 7., will hold also for Z**, Z*,. We have
(2%, ZP] = 0 = [Z,, Zg], (2, Zg] = i8g™ (4.37)
Thus also
(2%, Z*F) = 0 = [Z%,, Z%3),  [Z4** Z%g]=1idg*  (4.38)
These equations can be stated

o 7 o B
ozx Ok oz 0% (4.39)
ozZf  9Z*, 0Zg 0L,
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or, equivalently
AdZ** p dZ*, = dZ* A dZ, (4.40)

If, in addition, we assume that Z** is homogeneous of degree one in
Z* and of degree zero in Z,, i.e.

0 0
L - Ay / /. S
Z 37 = Z =7 (4.41‘)
then it follows that
ZxZx =707 ZFdZ*, = Z*dZ, (4.42)
also.

To sum up, the invariant structure obtained here for the C-picture
is defined by a symplectic structure given by dZ* A dZ,, where the
‘homogeneity’ operator Z*9/9Z* is also invariant. Equivalently,
7%Z, and Z*dZ, are invariant. If we restrict our attention to null
twistors, i.e. to N, this structure describes a (conformally invariant)
geometry of null geodesics in M, which heeds only the null geodesics
as a whole and does not refer to points on these null geodesics. The
non-null twistors appear to play a ‘catalytic’ role in simplifying the
description of the geometry of N. The structure so obtained for N
(and for C) is of a ‘universal’ nature; that is to say, it does not reflect
the local metric (or conformal) structure of M in any way. (We can
see this by removing a portion of M and joining it smoothly on to
another space-time manifold, e.g. to flat space-time. The invariant
structure of ¢ does not change.) To represent local structure of M—
and, in particular, its points—we would have to refer to some addi-
tional (generally non-local) structure for N over and above its in-
variant structure.

5. A Hilbert Space

The nature of the twistor transformations induced by the presence
of (conformal) curvature in the M-picture strongly suggests that, in
the passage to a quantum theory, we should identify a quantum
operator Z, with some multiple of an operator 9/9Z% In order to
realise such an identification, we must obtain the vectors of the
appropriate Hilbert space on which these operators are to act. It is
a remarkable fact that one such space is already at hand, having been
previously required for the twistor description of zero rest-mass fields
given in Section 3. This is the space of the analytic functions f(Z*)
which are employed in the contour integrals (3.10). In order to get a
Hilbert space, however, we shall require a definition of norm (or of
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scalar product) for these functions. I shall not enter into all the
details involved with this here, some of which involve topological
questions concerning the singularity sets, but merely give the formal
expression for the Hilbert space scalar product. These detailed matters
will be discussed elsewhere.

Let f(Z%), 9(Z*) be two functions of the complex variables Z%, Z1,
Z*, Z*® which are homogeneous of degree —2s —2 and analytic in
suitable domains. For example, we could choose domains of analyticity
of the type considered towards the end of Section 3, where the regions
of N U C* which were excluded, were two disjoint closed sets (each of
which intersected every line in N U C7). The scalar product is then

glf> =ik — 25) § GW(Z%) (Wg ZBY*2 9 n Z. (5.1)

where k is a real numerical constant, % and & are differentials given
by
W = oPrd W dWgndW, ndWs (5.2)

X = Jeyg,s Z*AZP n dZY n dZ° (5.3)

(the €’s being the usual Levi-Civita symbols), and where the (six-
dimensional) region of integration (contour) is compact, and surrounds
the singularities of fand g, and the region Wy ZB = 0 in a suitable way.
When s =1, 14, 2, ... the expression (5.1) is not defined as it stands,
the value of the integral being zero and the multiplying factor infinite.
In these cases we can, however, assign a meaning to (5.1) as the result
of a limif process applied to s, where s is taken as a continuous variable.
This will be discussed a little more shortly.

We have to establish that (5.1) is invariant under homologous de-
formations of the contour over regions of analyticity of the integrand.
Thust we must verify that the exterior derivative of the expression
after the integral sign vanishes. As a lemma towards achieving this,
consider any function p(Z%;u4,...,u;) which is analytic and homo-
geneous of degree —4 in the Z* and which depends differentiably on
the parameters uq, ..., ;. Then

d(pZ) =g§_dui/\ x (5.4)

T For an account of exterior calculus, see, for example, Hodge, W. V. D.
(1952). Theory and Applications of Harmonic Integrals. Cambridge University
Press; Flanders, H. (1963). Differential Forms, with Applications to the Physical
Seciences. Academic Press, New York and London.
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To demonstrate the validity of (5.4), we must show that the terms
involving derivatives of the Z* cancel out. We have

d(p%) =pd£’+%dz A fl’+g dug N % (5.5)
and
dp 1 dp o w B y b
g 0lH h & = o B s A2 A AZF n AZY 1 dZ
4}6 aazﬂz €ays PPY0 €0 AZA A AZP A AZ° A ZT (5.6)
Z aag“ ée,\PGTdZ’\ ANdZP ANAZE N dZT

by the skew-symmetry of dZ# A dZF A dZ? A dZ° and the properties of
the ¢’s. Now, by the homogeneity of p» we have

d
12 é’# —p (5.7)
Furthermore,
A% = Yep 0, A2 N dZP A AZ° A AZT (5.8)

Combining (5.5), (5.6), (5.7) and (5.8), we obtain (5.4) as required.

The expression q = (W) f(Z%) (W/gZﬁ)ZS‘2 which occurs in (5.1) is
analytic and homogeneous of degree —4 in Z* and also in W,. If we
apply (5.4), with the coefficients of the 4-form ¢#  in place of p, we
see that d(¢¥# A Z) contains no term of degree four in the dZ’s.
Similarly, d(g¥#” n &) contains no term of degree four in the dW’s.
Hence d(¢g#” A Z) = 0, as required. This shows that the integral (5.1)
does not, depend on the exact position of the contour, but only on its
homology class in the region of analyticity of g. It is the singularity
regions of f(Z*), g(W,) and (Z*W,) 2" which must prevent the
contour from being homologous to zero. Otherwise the integral in
(5.1) would vanish. Something of this nature is, of course, to be
expected, since it is the separation of singularities of f, in (3.10), which
gives rise to a zero rest-mass field.

It may be verified directly that the expression (5.1) arises from
precisely the usual definition of scalar product for zero rest-mass
fields, in the cases s = 0, s = 1. (The argument will be given elsewhere.)
The cases s=1, 14, 2, ... are less straightforward. Here the factor
(ZP W ,)~*** is no longer singular at Z? W, = 0, so the contour can
now be deformed across this region. In fact, for the type of field con-
sidered here, the contour can always be deformed to a point, so that
the integral in (5.1) vanishes. This is compensated by the pole in
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I'(2 — 25). To obtain the meaning of (5.1) in these circumstances, we
may resort to a limiting argument. If f and g are mutiplied by suitable
factors homogeneous of degree e, and I'(2— 2s)(ZFW,) %% is
replaced by I'(2 — 2s -+ €)(Z+ W ,)"***~¢, then (5.1) becomes well-
defined. Allowing e to tend to zero and the multiplying factors to
tend to unity, we can obtain a finite meaning for (5.1) when
s=1,1%,2, ... also.

Let us see this explicitly, for a particular choice of multiplying
factor. Choose A,, Bf and the contour suitably, so that the contour
avoids the region 4, Z* Bf Wg = 0. (This appears to be possible under
‘normal’ circumstances. For more exotic functions f and g it might be
necessary to choose more complicated multiplying factors.) Then

gl =Hm GkI(2 — 25 + €) x
e—>0

x (W) (B We)“f(Z%) (A ZN)«(Z+ W) >~ p &}

ih(=1)22
~Ts—2y7 " (6.9)

BEW;g A, ZV} p

X § g( W“)f(Z“) (ZH' W’L)ZS_Z In {W WA

by ’Hospital’s rule, provided s =1, 14, 2, .... The fact that (5.9) does
not change as 4, or B* are varied is again a consequence of the vanish-
ing of the integral in (5.1) (but with a slightly modified function in
place of f or g), as is readily verified. With this interpretation [e.g.
(5.9)] for the scalar product, it can be shown that also in the cases
s=1,1%, 2, ... the expression (5.1) agrees with the usual definition in
terms of fields. (The argument will be given elsewhere.) The more
complicated behaviour for s =1, 14, 2, ..., than for s = 0, { seems to
be related to the fact that a similar increase in complication occurs in
the usual formalism at this point owing to the fact that the number
operator becomes non-local (or involves potentials) when s > §. It is
also related to the existence of conserved integrals of the field (charge
for s = 1; mass, momentum and angular momentum for s =2) as we
shall see shortly. Note, particularly, that the scalar product (5.1) is
conformally invariantt (and a fortiori Poincaré invariant) because of
twistor covariance. The definition can also be applied to non-half-
integral spin s. The positive definiteness of (5.1) (for positive frequency
fields) will be discussed elsewhere, as will the defails of the definition
of the Hilbert space (e.g. two different functions f may correspond to
the same Hilbert space vector).

+ Compare Gross, L. (1963). Journal of Mathematics and Physics, 5, 687.
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The object, now, is to show that the operators Z* and E;]@Z_,x are
equivalent to each other in their effect on the Hilbert space. That is
to say, for any two functions f(Z%), g(Z*) of the type we have been
considering, but with f and g homogeneous of respective degrees
—2s — 3 and —2s — 2, we have (4, being constant),

ALy = a7y = AL - 4, <g[

We must verify the middle equality in (5.10). Thus, we have to show
that, for all s,

> (5.10)

§ 4o 28y 22— g+ W, 2000 o 27 o
(5.11)

{since (2s — 1) I'(1 — 2s) =—I'(2 — 2s)]. (If s =14, 1, 14, ..., then (5.11)
‘automatically’ vanishes and does not, in itself, imply (5.10) for these
s values. But it will follow that (5.10) holds if we can verify (5.11) for
all real s, since then a limiting argument on s will apply.) Now] (5.11)
will hold if we can show that the expression under the integral sign
is of the form dZ for some 5-form Z'. Set

= YA\ (ZY) GW o) (W ZBy2st Mwre W AW, n AW, 0 Z

We wish to calculate dZ'. By (5.4), we need only consider the terms
involving derivatives with respect to W’s. The calculation is straight-
forward if the identity

M GW A AW, A AW, = M e XS AW A AW, A d Wy (5.13)
=}8,F Mxd _ 5P7\ eM¥xdy x

X dW¢ A dWX A dW¢

is used, the terms in A4,e*9d W, ndW,ndW, cancelling out. The
result is that dZ" turns out to be precisely the term under the integral
sign in (5.11), as required.

On the basis of (5.10) we can now write

«—

0
Z“=—— 514:
A (5.14)

where these are to be read as operators in the Hilbert space. The
conjugate of (5.14) gives us

7, = (5.15)

0
o0z
1 See footnote on p. 92

7
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(Planck’s constant has been implicitly absorbed into the Z* by the
definition (5.1), since % has been chosen to be independent of s. This,
then, implies a particular scaling for the ¢, fields if the formulae
of Section 3 are strictly adhered to.) We now have the commutation
relation

2,78 - 7P 7, =5 .F (5.16)

which may be compared with (4.37) (we, of course, also have
7278 = 787>, 7*7PB = ZPZ*). This suggests a classical-quantum
correspondence (Dirac, 1958)

i, x 1=y — xb (5.17)

when ¢ and y are to be suitable quantum operators.

Note that the ‘homogeneity operator’ Z*9/0Z* is just Z*Z,. Since
the eigenvalues of this operator are the values —2s — 2, by (5.16) we
can write

_%(Zuz_ﬁzaza) =g (5.18)

for the spin operator. The trace-free ‘Hermitian’ operator
Eg* = 7 Zg — Y8p* 2V Z, (5.19)
= ZB Z* — 38g* Z_y /4

generates the infinitesimal conformal transformations of M (since if
p,P is ‘Hermitian’ and trace-free: Pg” = pg”; p.” = 0; then the infini-
tesimal twistor transformation Z* — Zf (0g% + tepg*) is defined by the
operator iepB“EuB = ieZBplg“ 0/0Z*, neglecting ¢?). Thus, the fifteen
components of Eg* include the energy, the three components of
momentum and the six components of relativistic angular momentum,
in addition to the five extra conservation laws which arise from
the conformal invariance. If we wish to single out only the ten
components of energy-momentum and angular momentum, then we
employ the operator

P8 = B IPY (5.20)

where I*f is the (fixed) metric twistor (Penrose, 1967a) (whose only
non-zero components, in the coordinate system of Section 2, are
I%® =132 =1; also, for I g, just Iy =—I,, =1 are non-zero).

It is of interest to see what the M-picture interpretation of the
operators Z* and 0/0Z* amounts to. Let ¢ 5 1 be the spin s field
corresponding to f(Z*) as in Section 3. Then the spin s — % field
corresponding to 7' ZBf(Z%), where T'g is some constant twistor, is just

g1 =bap. (it + x4 pp) = —id 5 74 (6.21)
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where, as in (2. 14) the constant spinors x4, pp are defined by
Ty=—«!, Ty =« Ty=py, Ty =—py. Similarly, the spin s + % field
orrespondmg to T'8 of|0ZF is

XaB...osw =028+ V) poarban...y— (k& —ix? pp) Voydap... 1 (5.22)
=—(s+ %){VQ’(MTQ’}VSAB. 0~ Veudban 1

One may verify directly that the 5, and x4 5 of (5.21), (5.22)
satisfy the zero rest-mass equation (3.3), by virtue of (2.15):
Vp a7ty =0. In (5.22), ¢, 5 acts as a kind of potential field for
XA... M Partmularly in the case pp =0 (so 74 is constant), this type
of potential has been studied earlier (Penrose, 1965).

Finally, we may try to interpret, in the present formalism, the
(conserved) 2-surface integrals of electromagnetic field (s =1) or of
linearised gravitational field (s =2) which respectively define the
total charge or total mass, momentum, and angular momentum of a
source for the field. For this purpose we must allow ourselves to
consider singularity regions for the function f which are more extensive
than arose for the free-wave fields we had been considering pre-
viously. For the case of charge we have

Q=k /(20 % (5.23)

where f is homogeneous of degree —4 ; and for mass, momentum and
angular momentun,

6B =k, ff 72 ZBf(Z%) & (5.24}

where f is homogeneous of degree —6. Here k, and %, are constants,
and the three-dimensional closed contour is chosen suitably so as to
correspond to a region of free field surrounding the sources. Ex-
pressions (5.23) and (5.24) can both be obtained by directly translating
the usual expressions in terms of the fields. (The arguments will be
given elsewhere.) For free waves, the integrals (5.23), (5.24), of
course, both must vanish. From this, we can see at once that the
integral in (5.1) must necessarily vanish for such waves (s = 1,2)—
hence the necessity of the limiting procedure to define scalar product
(s=1,11,2,...).

Note that (5.24) shows how the mass, momentum and angular
momentum integrals can all be reduced to ‘charge’ integrals for
certain spin-1 fields constructible from the given spin-2 field ¢ 4 zop.
For, if we multiply (5.24) by a constant symmetric twistor .S, g then

(5.24) reduces to (5.23), with f(Z*) replaced by ;S{,qu"‘Z/3 f(Z%). In the
VS
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M-picture, this corresponds to calculating the ‘charge’ integral for
the spin-1 field given by

k
b4 =—k_i¢ABODUCD (5.25)

where %P is the symmetric spinor, satisfying V¥ @6 = 0, which
corresponds to 8,5 as in (2.17). For sources for which ¢ 4505 can be
derived from a potential, the ‘magnetic’ parts of (5.24) vanish. If
8y, I® is ‘Hermitian’ (i.e. =8P I,,), then this means that there is
zero ‘magnetic charge’ for 8 , ; (as would follow if 8 4 z is derivable from
a potential). This condition, in terms of (5.24), is the ‘“Hermiticity’
relation

G Ip, = G, I* (5.26)
Equation (4.26) is the condition for G*# (= G#*) to be of the form
G = B¢ IPv (5.27)

where B,* = B,*, B,” = 0.

We may compare (5.20) with (5.27). The F*f of (5.20) describes the
total mass, ete., in the sense of inertial mass or energy content of the
field. However, G*f describes the total active mass, ete., as it appears
as the source for the particular spin-2 field ¢ 4 p.p [defined by the f of
(5.24)]. This suggests a possible way that the actual field equations of
general relativity might eventually be incorporated into the present
formalism. For ¢ ,pop to describe the gravitational field, we should
expect something like

(FeBy = QOB (5.28)

A complication which will naturally arise, springs from the fact that
¢ 4pop must, itself, contribute to (F*By. This would result in non-
linearities of a type familiar in general relativity theory.

6. Conclusions

The twistor formalism appears to afford considerable scope for the
expression of basic physical processes, several aspects of physics
fitting unexpectedly naturally into the twistor framework. The
development given here is an approximately ‘historical’ one. It was
the desire to make the formalism fit in with general relativity which
suggested the identification Z, = 9/0Z* as a basis for an approach to
quantization. This in turn led to the correct twistor expression for the
zero rest-mass field Hilbert space scalar product (which had hitherto
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proved to be elusive). The identification emerged as being consistent
with this scalar product. It is thus very tempting to believe that a link
between space-time curvature and quantum processes may be sup-
plied by the use of twistors. Then, roughly speaking, it is the continual
slight ‘shifting’ of the interpretations of the quantum (twistor)
operators which results in the curvature of space-time.
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