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Abstract 

The formalism of twistors [the 'spinors' for the group 0(2, 4)] is employed to 
give a concise expression for the solution of the zero rest-mass field equations, 
for each spin (s = 0, �89 1, ...), in terms of an arbitrary complex analytic function 
f (Z  ~) (homogeneous of degree -2s  - 2). The four complex variables Z ~ are the 
components of a twistor. In  terms of twistor space (C-picture) it is analytic 
structure which takes the place of field equations in ordinary Minkowski 
space-time (M-picture). By requiring that the singularities of f (Z  ~) form a 
disconnected pair of regions in the upper half of twister space, fields of positive 
frequency are generated. 

The twistor formalism is adapted so as to be applicable in curved space-times. 
The effect of conformal curvature in the M-picture is studied by consideration 
of plane (-fronted) gravitational 'sandwich' waves. The C-picture still exists, 
but  its complex structure 'shifts' as it is 'viewed' from different regions of the 
space-time. A weaker sympleetic structure remains. The shifting of complex 
structure is naturally described in terms of t tamil tonian equations and Poisson 
brackets, in the twistor variables Z ~, Z~. This suggests the correspondence 
Z~ = O/0Z ~ as a basis for quantization. The correspondence is then shown to be, 
in fact, valid for the Hilbert space of functions f(Z~), which give the above 
twistor description of zero rest-mass fields. For this purpose, the Hilbert space 
scalar product is described in (conformally invariant) twistor terms. The 
twistor expressions for the charge and the mass, momentum and angular 
momentum (both in 'inertial' and 'active' versions, in linearised theory) are 
also given. 

I t  is suggested that  twistors may supply a link between quantum theory and 
space-time curvature. On this view, curvature arises Whenever a 'shift' occurs 
in the interpretation of the twister variables Z ~, Z~ as the twistor 'position' and 
'momentum'  operators, respectively. 

1. Introduction 

I n  a n  ear l ier  p a p e r  (Penrose ,  1967a) t he  fo r ma l i sm  of twistor algebra 
was deve loped ,  wh ich  t r ea t s  the  g e o m e t r y  of  Mi nkow sk i  space - t ime  
f rom the  p o i n t  of  v iew of i ts  n u l l  l ine a n d  nu l l  cone s t ruc tu r e .  I n  the  

t This work was partly carried out during the author's five-month stay at 
Cornell University. 
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62 ROGER PENROSE 

present paper this formalism is used to give a concise description of 
zero rest-mass fields, and the formalism is developed further so as to 
be applicable in curved space-times as well as flat. An unexpected 
interconnection between these two ideas leads to a new view of the 
relation between quantum theory and space-time curvature. 

According to the twistor formalism, any conformally covariant 
operation in Minkowski space-time has a description in purely 
twistor terms, and with the introduction of a fixed skew-symmetric 
'metric' twistor I~t ~ we can also express Poincar6 covariance in purely 
twistor terms. The twistor algebra leads to a geometrical picture of 
phenomena (the C-picture) which, although strikingly different from 
the usual space-time description (M-picture), is nevertheless com- 
pletely equivalent to it. The points (i.e. 'events') of the M-picture 
correspond to non-local structures ( 'lines'--each with the topology 
S 2) in the C-picture; conversely the points of the C-picture correspond 
to non-local structures in the M-picture (to null straight lines or, 
more generally, to certain twisting null line systems). An outline of 
the results we require here will be given in Section 2. 

The motivation for rewriting physical quantities in twistor terms 
springs from several directions. In  the first instance, there is simply 
the hope that  when a formalism so different from the usual one is 
used, new insights may be gained. While it is true that  certain im- 
portant  concepts, which were easy to express in the old formalism, 
can become complicated in the new (which need not be a serious 
drawback, since the old formalism is always at hand when required), 
there are other operations of great utility in the new formalism which 
one would be unlikely to come upon solely by considerations with the 
old formalism. But are these new operations likely to be of any 
particular importance to physics? I t  is here that  I must be more 
specific and mention some of those features which motivate the 
specific choice of a twistor formalism for the description of space-time. 

One of these features is that  the twistor formalism is the natural 
vehicle for the algebraic description of conformal invariance. Twistors 
are, in fact, the 'spinors' appropriate to the six-dimensional pseudo- 
orthogonal group 0(2, 4), which is 2-1 isomorphic with the ]5-para- 
meter conformal group of (the compactified) Minkowski space-time 
(Cartan, 1914; Brauer & Weyl, 1935; Hepner, 1962; Mural, 1953, 
1954, 1958; Segal, 1967). The connected component of the twistor 
group SU(2,2) is 2-1 isomorphic with connected component of 

".to   our four 0(2,4) so  

dimensional irreducible representation of the restricted conformal 
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group. Any other finite-dimensional representation of the conformal 
group can be expressed as a direct sum of twistor representations 

(of general valence [qP]). 

But  is there reason to believe that  the eonformal group has any 
fundamental significance to physies?~ The att i tude adopted here will 
be that  fields of zero rest-mass (which are conformally invariant) have 
primary significance; and that  in some way, rest-mass emerges as a 
feature of interactions between these primary zero rest-mass fields. 
A simple way such an interaction might be expressed emerges in the 
van der Waerden description (van der Waerden, 1929) of the Dirae 
equation : 

V~'~ r = ~r VB,~ r = _ ~ r  (1.1) 

Here/x is a real constant, 21/2/xh being the mass of the field. We may 
regard (1.1) as describing two neutrino-like fields CA, r whose free- 
field equations are given by  putting t~ = 0 in (1.1). These free-field 
equations are then conformal]y invariant. We may take the view 
that/~ is simply a coupling constant, given for all time, and that  the 
two-field interaction (1.1) simply breaks this conformal invariance. 
The conformal group is then only strictly a symmetry of very high 
energy physics--where energies are high enough that  the rest-mass 
interaction may be neglected (Kastrupp, I962, 1966). Alternatively 
we may imagine that /z  is 'really' a new variable field which for some 
reason (perhaps of a cosmological nature or from stability considera- 
tions, say) 'happens' to be transformable to a constant with a very 
high degree of accuracy. With further equations on/x, the entire set 
of equations can be made conformally invariant, the equations (1.1) 
referring to a three-field conformally invariant interaction. Finally, 
we may take the view that  the interaction terms in (1.1) are of a 
phenomenological nature and the 'accurate' equations are really 
much more involved. This view is presumably what would be implied 
by  the renormalization procedure. In addition, it is conceivable that  
general relativity has some significant role to play in connection with 
the existence of rest-mass, since gravitation is the only (known) 
phenomenon of nature which requires that  a definite choice be made 
for the zero of energy, namely that  it should coincide with the zero 
of active mass. 

I do not wish to prejudice the issue here as to the ultimate nature of 
rest-mass. The att i tude is only that  it should be of significance to talk 

F o r  a discussion of t h e  r e l a t ion  of t he  conformal  g roup  to  physics ,  see 
F u l t o n ,  T., l~ohrl ich,  F. a n d  W i t t e n ,  L. (1962). Rev. Mod. Phys., 34, 442. 
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about  free fields and that  such fields may be viewed as having zero 
rest-mass. A description in terms of twistors should then have some 
importance as a 'background' formalism. Rest-mass could then be 
treated along with other interactions at a later stage. 

A second feature of twistor analysis, which has been highly instru- 
mental in the motivation for its original development, lies in the 
extent  to which it 'geometrises' an important aspect of quantum 
mechanics, namely the splitting of field amplitudes into positive and 
negative frequency parts. In the twistor formalism, instead of 
resorting to Fourier analysis, it is possible to exploit an alternative 
description based on the positioning of singularities of analytically 
extended functions.~ As we shall see shortly, a positive or negative 
frequency field will arise according as the singularities of a certain 
analytic (holomorphic) function representing the field, form a dis- 
connected pair of regions in the upper or the lower half of twistor 
space. I t  is the fact that  the twistors lead to a 'mild' form of 'com- 
plexification' of the space-time which enables this idea to take on a 
'geometrical' significance. The geometry of the C-picture involves its 
complex analytic structure. The analytic nature of functions defined 
in twistor space then yields the entire structure of zero rest-mass fields 
in the M-picture; in particular, field equations and time-development, 
now become simply particular aspects of C-picture analyticity. 

Some of these matters will be described in Section 3. The aim there 
is to show that  zero rest-mass fields find a very natural and remarkably 
simple description in twistor terms. This reinforces a belief that  
twistors might possibly occupy a position in physics of deeper im- 
portance than just  as a technical device. But  if twistors really do 
occupy such a position, it would have to be possible to overcome one 
of the supreme obstacles to such a viewpoint, namely that  the for- 
malism would in principle, at  least, have to be applicable in (con~ 
formally) curved space-times. For even if general relativity is not the 
correct theory of gravitation (and it is, to say the very least, the best 
theory of gravitation available at the present time), there can be little 
doubt  that  the conformal structure of space-time, as defined by  its 
null cones, does differ from that  of Minkowski space-time. (A critical 
feature of theories of gravitation based on a conformally flat null-cone 
structure, e.g. NordstrSm's theory, is that  there is no resultant 
bending of light by  a massive body. I t  may be taken that  this, at least, 
is experimentally disproved.) 

The essential difficulty involved in attempting to adapt the twistor 
See, for example, Streater, 1%. :F. and Wightman, A. S. (1964). PCT, Spin 

and Statistics and All That. W. A. Benjamin, I~ew York. 
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formalism to conformally curved space-time lies in the fact that  the 
complex analytic structure of the C-picture is destroyed by conformal 
curvature of the M-picture (Section r This would seem, at first sight, 
to invalidate completely the use of twistors for conformally curved 
manifolds, since it is precisely the complex analytic structure of the 
C-picture which gives rise to all its important properties. However, it 
is here that  twistors supply an unexpected link between quantum 
mechanics and space-time curvature. A non-analytic transformation 
of twistor space is one which mixes up the twistor coordinates Z ~ with 
their complex conjugates Z~. But the precise type of non-analytic 
transformation of the C-picture which is induced by the presence of 
conformal curvature in the M-picture turns out to be one preserving 
Poisson brackets, where Z~ is regarded as the canonical conjugate of 
Z ~. This suggests that  in the passage to quantum theory, Z ~ should 
be regarded as an operator, where the operator Z~ is identified with 
a /az  ~. (Planck's constant will be absorbed into the definition of the 
twistor variables Z%) With this identification, one can still operate 
with analytic functions in twistor space. What in the 'classical' theory 
was a 'canonical' non-analytic transformation of twistor space, 
corresponds in the quantized (one-particle) theory, to linear trans- 
formation of the space of analytic functions defined on twistor space. 
In  fact, with the appropriate choice of norm, these become unitary 
transformations of a Hilbert space. The operations Z ~ and a/az  ~' now 
become explicit operations in the M-picture which apply to zero 
rest-mass fields. The operator Z ~ lowers the spin by �89 while a/az  ~' 
raises it by �89 The identification of Z~ with a/az  ~ becomes explicitly 
consistent with the Hilbert space scalar product. Thus, we must 
regard the analytic structure of the C-picture as being relevant to the 
quantum structure of fields (e.g. to one-particle states), while the non- 
analytic transformations induced by curvature in the M-picture refer 
essentially to the classical limit. 

We are led to a new view of the nature of space-time curvature. Let 
us adopt the attitude that in a certain region of space-time, the 
twistor variables Z ~ are the ones, in terms of which physical quantities 
are to be expressed. The Z ~ are the C-space 'position' operators and 
the Z~ = a/az ~ are the conjugate 'momenta'. As we pass through a 
region of eonforma] curvature (e.g. a gravitational wave) the 'position' 
and 'momentum' variables get mixed up. We may take a 'self- 
consistent' or 'Machian' view of the correspondence principle, whereby 
the particular choice of quantum variables which are to be regarded 
as 'position' variables is governed by the nature of the large-scale 
physical structures in the region under consideration. Then, as we 



66 ROGER PENROSE 

move to another region of space-time, the influence of a change in the 
large-scale structures is to effect a 'shift' in the natural interpretation 
of the variables. Thus, curvature of space-time emerges as a phe- 
nomenon intimately connected with such an att i tude to the corre- 
spondence principle and with the quantum structure of nature. 

2. Ou t l ine  o f  T w i s t o r  A l g e b r a  

The main features of twistor algebra that  will be required here will 
now be reviewed. For further details, the reader is referred to an earlier 
paper (Penrose, 1967a). Let  x ~ x i, x 2, x 3 be standard Minkowski 
coordinates in fiat space-time M--met r ic  given by  

ds2 = (dx~ 2 - (dx l )  2 - (dx2)2  - (dxS) 2 

Introduce a 2-spinor notation,~ relating x AA', X~A, to X a by  

x ~176 = X i r  = 2 -1/2 (x ~ + x i ) ,  x ~  = --Xio, = 2 -1/2 (x 2 -? i x  ~) (2.1) 

X 10' = --Z01, = 2--1/2 (X 2 - -  iX3), X 11' = X00, = 2--1/2 (X 0 - -  X 1) 

When the coordinates x ~ are real, the matrices (x AA') and (XAA') are 
Hermitian so we have two real coordinates u,  v and one complex 
coordinate ~, given by  

u -- x ~176 v = x ii', ~ = x ~ ~ = x i~ (2.2) 

The metric of M now takes the form 

ds 2 = 2 d u d v  - 2 d ~ d ~  (2.3) 

A twistor Z~, of valence [10] is a quanti ty with four complex com - 

ponents Z ~ Z l, Z 2, Z ~, its complex conjugate Z~ being a twistor of 

valence [~], related to Z~ by  

2 0  = Z 2--, 2 1  = Z --~, 2 2  = Z ~ ,  2~  = Z --~ ( 2 . 4 )  

(When the bar extends only over the kernel symbol, this refers to the 
twistor complex conjugation operation. When the bar extends over 
both the kernel symbol and its index, then this means simply the 
complex conjugate of the complex number involved.) The twistor Z ~ 

t The  p r imed  index  le t te r  A '  m u s t  be regarded  as a d i s t inc t  l e t t e r  f rom A,  
so t h a t  no con t rac t ion  is impl ied  in X Aj'. U n d e r  complex  conjugat ion,  u n p r i m e d  
indices become p r imed  and  p r imed  indices become unpr imed .  
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is called right-handed, left-handed, or null respectively,  according as 
the  scalar 

Z ~ 2~ = Z ~ Z --~ + Z 1Z --~ + Z 2 Z - ~  + Z ~ Z - - i  (2.5) 

is positive, negative,  or zero. (The summat ion  convent ion will be 
employed  throughout . )  A null twistor  Z ~ describes a null straight line 
Z in M according to the  scheme : 

Z ~  (2.6) 

where u, v, ~ are coordinates [cf. (2.2), (2.1)] of some point  P on Z and 
du: dv: d~ define the direct ion of Z. Since Z is a null line we have,  b y  
(2.3), 

dudv  = d~d~ (2.7) 

Hence  Z ~, being invar iant  under  x ~ -+ x a + k dx a, is independent  of  the  
choice of  P on Z. By  (2.7), we can also write 

Z ~  ~ = d~:dv:i~dv - ivd~:i~d~ - Judy (2.8) 

Note  t h a t  it  is Z ~ up to a complex factor of proportionality which 
uniquely  corresponds to the  line Z. When  Z ~ = Z 1 -- 0, we do not  get 
a finite line in M, bu t  ra the r  a generator  of  the  null cone at infinity 
for  M. I f  we admi t  these lines at infinity as pa r t  of  the  conformal 
s t ruc ture  of M ( 'compactified'  Minkowski space-time), then  a null 
twistor  Z ~ (up to  propor t ional i ty)  only fails to define a unique null 
line in M if  Z ~ = 0. 

I f  X ~ and  Y~ are null twistors,  defining null lines X and Y in M, 
respectively,  then  the condit ion for X and Y to meet  (possibly a t  
infinity) is 

= o ( 2 . 9 )  

(This is, of  course, the same as Y%~r = 0.) I f X  and Y do meet ,  a t P ,  
say, then  any  twistor  Z ~ which represents  a generator  of  the null cone 
with  ver tex  P has the form 

Z ~ = ;~X ~ + ~Y~ (2.]0) 

This is necessarily null, by  (2.9). I f  X and Y 'meet  a t  infinity '  (but  do 
not  bo th  lie a t  infinity) then  the  null cone becomes a null hyperplane,  
with ve r t ex  P on the null cone at  infinity. I f  bo th  X and Y lie a t  
infinity,  then  P becomes the  ver tex ,  I ,  of  the  null cone a t  infinity 
itself. Thus  any  point  P in M, including those which lie a t  infinity, 
can be represented  in twistor  te rms by  a l inear set of  the  type  of  (2.10). 

I n f a c t w e c a n u s e t h e t w i s t o r P ~ = X ~ Y ~ - Y , X ~ , o f v a l e n c e [ 2 0 ] ,  
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to represent such a linear set, if desired. We can even represent any 
point of complexified Minkowski space-time M* by a linear set like 
(2.]0), but  where not all the Z ~ are null. t 

We have, available, two alternative geometrical pictures for the 
description of phenomena (Fig. 1), namely the M-picture (which is 
the normal space-time description) and the C-picture, the space C 

/ \ 
x\ 

/ /  .X y \\ 

\ / 
\ t / \ / 

\ / 
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X / 
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C + - C O  6 - 

: N - X  ) 7 : 1  

~ > .t :.::. : ,,'.',.:. ~, , ' .  "..'. ':,: �9 �9 , > . ,  ',..: . . . ~ ' .  

M-PICTURE C-PICTURE 
Figure 1 . - -The M-picture and C-picture representations of the twistors X ~, Y~ 

a n d P  ~r = X ~ Y ~ - Y ~ X  r where X~2~ = Y"37~ = 0 = X~:Y,. 

being the three-complex-dimensional projective space of propor- 

tionMlyelassesoftwistorsZ~,ofvalcnce[10].Asarealmanifold, the 
space C is six-dimensionM. A five-reM-dimensional submanifold N 
(topology S 2 x S ~) of C defines the null twistors Z ~ (Z~Z~ = 0). The 
removal of N from C leaves two disconnected open subsets C + and C- 
(each with topology S 2 x E 4) of C, defining, respectively, the right- 
handed (Z~Z~> 0) and left-handed (Z~Z~ < 0) twistors Z ~. The 
manifold N may be thought of as the space of null lines in M (eom- 
paetified, so M has topology S 1 x S~). We may refer to C + and C- as 
spaces of 'complexified' null lines in M, but  we must bear in mind 
that  this 'eomplexifieation' process only increases the (real) dimen- 
sionality of the null line system from five to six. The points of M are 
represented in the C-picture as complex projective lines (topology $2), 
which lie entirely within N. A projective line P,  in C, which does not 

t I n  fact, M* is just the Grassmannian (or Klein representation) of projective 
lines in the complex projective three-space C. (See, for example, Todd, J. A. 
(1947). Projective and Analyt ical  Geometry. London; Scruple, J. G. and l~oth, L. 
(1949). Introduction to Algebraic Geometry. Oxford. 
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lie entirely on N represents a point of the complexified space M*, for 
which the coordinates x a are not all real. In fact, the imaginary part 
of x a is spacelike, null, or timelike, respectively, according as P inter- 
sects N in a one-real-dimensional region (a curve: topology $1), in a 
point, or not at all. I f  null or timelike, the imaginary part  of x ~ is 
future-pointing or past-pointing according as P lies in C+kj N or 
C - U N .  

A twistor W~ of valence [~] defines a complex projective plane W 

in C (a four-real-dimensional submanifold of C), namely the set of 
points Z, of C, satisfying 

W~Z~=O (2.]]) 

Conversely, the plane W defines W~ uniquely up to proportionality. 
Now the plane W meets N in a three-real-dimensional set of points in 
the C-picture. These represent, in the M-picture a three-dimensional 
system of null lines (a null congruence). Such a congruence will define 
W uniquely. When W~ is null (W~ W~= 0), the W-congruence is 
simply the system of null lines in M meeting the null line W (with 
coordinates W~). When W~ is right-handed (W~ W~> O) [resp. left- 
handed (W~ W ~ < 0)], the W-congruence is a system of null lines in 
M, one through each point of M, which twists about every point in a 
right-handed [resp. left-handed] sense (a Robinson congruence). Thus, 
by invoking twistor complex conjugation, we can represent any 

twistor Z~ of valence [10], up to proportionality, whether Z~ is null or 

not, by a (generally twisting) congruence of null lines in M, namely 
that  defined by W~ = 2~. 

We may think of twistor complex conjugation as defining a duality 
correspondence in the projective space C (a t termitian correlation). 
To any point Z in C corresponds a unique 'polar' plane Z; to any 
plane W in C corresponds a unique point W (the 'pole' of W). The 
point Z lies on the plane W if and only if W lies on Z. The set N 
consists precisely of those points Z which lie on their 'polar' planes Z. 
Dually, the plane W 'touches' N if and only if it contains its 'pole' W. 
Similarly, a projective line P in C has a uniquely defined 'polar' line_P; 
Z lies on P if and only if P lies on Z. The correspondence P +-+ P 
between lines in the C-picture represents, in the M-picture, precisely 
the correspondence between a point and its complex conjugate in the 
complexified space M*. The real points of M*, namely the points of M, 
are represented in the C-picture by the lines lying entirely on N. 
These are just the lines for which P = P. More generally, the complex 
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conjugation operation will apply to a n y  twistor K~.~::; ~ of general 

valence . The result is a twistor K~fl...r of valence , where the 

labellings of the 0 and 1 components are interchanged with those of 
the 2 and 3 components on complex conjugation in the manner of 
(2.4) ; e.g. K~: :.12 = K02.1::g0 etc. In each case, any geometrical inter- 

pretation for K ~/~'" "r in the C-picture will give rise to a corresponding p .  �9 . T  

d u a l  interpretation for K'~I}:;.~r 
The allowable twistor transformations, other than those which 

involve a complex conjugate operation or a space or a time reversal 
in the M-picture, are given by  

=-"-,~...v ~r t g P ' " t o C t p a ' " l ~  v (2.12) 
where 

tfl~trfl = ~r ~ = tfl~trfl; ]tfl ~] = 1 (2.13) 

Because of the twistor complex-conjugation rule (here applied to tt~), 
it follows that  the group of t~-matrices satisfying (2.13) is just  
SU(2, 2). (The Hermitian form (2.5) has signature (+, +, - ,  - ) . )  In the 
C-picture, the transformations (2.12) (regarded as active trans- 
formations) are simply the projective transformations of C which 
leave N invariant and do not interchange C + with C-. In  the M- 
picture these are the conformal transformations of M continuous 
with the identity. 

Twistors can also be represented (a little more completely) in the 
M-picture in terms of certain spinor fields. I f  2'~ is any twistor of 

valence [~], we can define a 2-spinor field r~(x ~) by 

r A = K A - i x ~ B , p  B" (2.14) 

where To = K0, T~ = K~, T2 = p0', T8 = pl'. Then rA transforms cor- 
rectly as a conformal density of weight �89 as T~ undergoes (2.12). In 
fact, a spinor field of the type  given by  (2.14) (where K~ and pB" are 
constant) is the general solution of the equation 

Vp,(A TB) = 0 (2.15) 

where round brackets denote symmetrisation and where 

Vp, A = a /ax  AP" (2.16) 

(so, equivalently, V P ' A -  O/OxAp,). The field r A gives a conformally 
invariant M-picture realisation of the twistor T~ up to a multiple of 
-t-l, =Ei. (This fourfold ambiguity arises because the spinor field vA 
picks up a factor 4-i as it crosses the null cone at infinity. Such an 
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ambiguity is essential because of the four-valued nature of the 

~'//-twist~ representation of the conformai group. )Any completely 
I -  . I  

symmetric covariant twistor S~f~...4 = S(~f~...4) also has an M-picture 
realization as a spinor field somewhat similar to (2.14). For example, 

f o r v a l e n e e [ ~ ] , i f ( f o r A , B = 0 , 1 )  w e  p u t  S ~ B = ~ A B ,  SA, B+2=IX~ ", 

S~+2,B+2 = v A'B" (where S~/~ =S/~ so  ~AB = ~BA, pA'B' = pB'A'), the 
spinor field 

aAB = ~BA -- 2ilx~x XB)C' -- re'D" X~C" XBD" (2.17) 

is of the type of the general symmetric solution of 

Vp,(a abe ) = 0 (2.18) 

and represents Sa~ in a conformally invariant way up to sign • A 

general (non-symmetric) twistor of valence [P] has a representation 

similar to (2.17), but  only as a many-point field. 

c + 

~:. . ' . . . - . ' . :  :.;..:: ::. ::: :i+:! ! ::.:~:......::~ 

6 
oo 

complex 
analytic 
surface 

represents 
shear-free 

I- null 
congruence 

in M 

Figure 2.--The Kerr theorem. 

The geometrical significance to the M-picture of the analytic 
structure of the C-picture is best illustrated by the theorem of  K er r  
(Kerr, unpublished). Let Q be a complex analytic surface in C, so Q 
is defined by the vanishing of a homogeneous analytic function in the 
twistor coordinates Z% The set Q is four-real-dimensional and inter- 
sects 2V in a three-real-dimensional region (Fig. 2). This defines a 
congruence of null lines in M. Kerr's theorem states that  such a 
congruence is necessarily shear-free and conversely that  any shear-free 
congruence of null lines in M is obtainable in this way (or as a limiting 
case of such a construction). The shear-free condition states that  if a 
'bundle' of null lines of the congruence neighbouring a given null line X, 
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and lying (to first order) in the null hyperplane through X, has a 
(small) circular cross-section at one point of X, then it also has a 
(small) circular cr0ss-section at every other point of X (Fig. 3). (The 
Robinson congruences, given when (2 is a plane, are particular 
examples with this property.) The shear-free condition appears as a 
kind of M-picture realisation of the Cauchy-Riemann equations for C. 

i 
Figure 3.--The shear-free condition. (The circles lie, to first order, in the null 

hyperplane containing X.) 

3. Twistor Description of Zero Rest-Mass Fields 

In another paper (Penrose, 1968), the following contour integral 
formula was introduced, which expresses the general (analytic) 
solution of the spin s, zero rest-mass, free-field equations, for 

s = 0 , ~ , l , ~  . . . .  

in terms of an arbitrary analytic function of three complex variables 
F(~, t~, ~): 

r  A~F(A,u+)~,~+)tv)d)~ (r=O, 1,...,2s) (3.1) 

(The contour is to surround singularities o f f  and to vary continuously 
with u, v, ~.) For, we have 0r = Or and Or = 0r 
(r = 0, . . . ,2s - 1), if s > 0, and (02/auav - a2/0~0~}r = 0 for s = o. 
Writing 

r  = r  r  = r  . . . .  , r = r  ( 3 . 2 )  
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these equations become, if s > 0, 

VP'A CAB...~ = 0 (3.3) 

where r  is symmetric (= r with 2s indices and 

vp,  v r = 0 (3.4) 

if s = 0. Equations (3.3) and (3.4) are simply the zero rest-mass flee- 
field equations (Dirac, 1936; Fierz, 1940)for spin s > 0 (Dirac-Fierz) 
and spin s = 0 (D'Alembert), respectively. 

Thus the free-field equations on CAB...Z are an automatic conse- 
quence of the analyticity of F. The converse result that  any analytic 
zero rest-mass free field CAB...Z has a representation in the form (3.1) 
is also true, but  the argument giving the construction of F from 
Cz...~ will not be entered into here. We note, in this context, that  the 
function F is not, however, uniquely determined by  CA...~. If, for 
example, we add to F any function which is regular inside the contour 
(for every u, v, ~), then clearly the resulting field r will be un- 
affected. This freedom of choice for F defines a kind of gauge group 
(different from the usual gauge group) but  which depends on the 
positioning of the contour (as a function of u, v, ~). The nature of this 
gauge freedom will not be discussed here. Nor will certain interesting 
features of the representation (3.1), such as the fact that  'null' or 
'algebraically special' solutions of (3.3) can be very readily generated, 
by merely requiring that  the contour surround only a simple or low- 
order pole of F (Penrose, 1968). Instead, two matters of more im- 
mediate relevance will be treated, namely the transcription of (3.1) 
into a more general twistor form and a topological requirement on the 
singularities of F that  ensures that  the field r has positive (or, 
alternatively negative) frequency. The question of a eonformally 
invariant Hilbert space norm for fields CA...z, given in terms of F,  
will be discussed in Section 5. 

We note, first, that  using the notation (2.6) or (2.8) we can write 

Zo iZS i Z ~  

where 

(3.5) 

(3.6) 
Set ( zo 

f ( Z  ~) = f (Z~  ~) = (iZI)-2~-2F_- Z1, Z1,  Z1 ] (3.7) 

Then F(Z ~) is analytic and homogeneous of degree - 98 - 2 in Z ~. 
The twistor Z ~ represents a null line Z through the point P with 
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coordinates u, v, ~. The direction of Z is defined by • according to 
(3.6). Let X and Y be the two particular null lines through P given 
respectively by ~ = oo and A = 0. We can assign the twistors X ~, Y~ 
to X, Y as follows : 

(X  ~) = ( i ,O,v , -~);  (Y~) = (O,-i ,  ~ , -u )  (3.8) 
and set 

Z ~ = ~X ~ q- Y~ (3.9) 

This is consistent with (2.6) and (3.6), and we have Z 1 = - i .  By (3.7) 
and (3.5), we can now write the formula (3.1) as 

1 ~ r f ( . ~ X : , + y ~ , ) d  2 ( r = 0 , 1 ,  2s) (3.10) = . . . ,  

The quantities r are here written explicitly as functions of X ~ and 
Y~. This is because the spinor components (3.2) are dependent on a 
particular choice of spin frame, and although this spin frame was 
originally related to the coordinate system (2.1), we can think of X ~ 
and Y% instead, as defining the spin frame at P. Indeed, we can now 
dispense with our original coordinates (2.1) altogether, since the 
point P is defined by X ~ and Y~ via 

P~'~ = X ~ Y~ - -  Y " X  [~ (3.11) 

which serve as the twistor coordinates for P. We can, in fact, enlarge 
the domain of the formula (3.10) by dropping the requirement that  
X ~ and :Y" have the special form (3.8), retaining merely (for a real 
point P) the condition tha t  X ~ and Y" both be null and satisfy 
X ~ Y~ = 0. Keeping the P~B of (3.1 l) fixed, the freedom of choice for 
X ~ and Y~ is given by the 'spin transformation':  

~ =pX~ + aY% ~ = - r X : ' + w Y  ~ (3.12) 
with 

pco -- or = 1 (3.13) 
where inversely 

X ~ = w~  ~ - aY ~, Y~ = - r R  ~ q- ps (3.14) 

Substituting (3.14)into (3.10), putting 

= + + (3 .15)  

and keeping the contour 'fixed' (i.e. so that  the same values o f f ( Z  ~) 
are involved after the substitution), we get 

r ~, y ~ ) = ~  (o~+~-y(~+~o)2"-~f(~2~+ s (3.16) 
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When expressed in terms of 

r ~f(~.2~+ s (r=O, 1,...,2s) (3.17) 

(3.16) yields the transformation law for a D(s, 0) representation t of 
the homogeneous Lorentz group at P. This is precisely what is 
required of the formula (3.10), in order that  it should correspond to a 
field r correctly transforming under local Lorentz transforma- 
tions. I t  is for this purpose that  the function f, as defined in (3.7), is 
chosen to be homogeneous of degree - 2 s -  2. With the original ex- 
pression (3.1), the role played by the value of s does not emerge. The 
full twistor expression (3.10), on the other hand, contains the entire 
transformation behaviour of the field. 

We may note the general twistor form of the equations (3.3) : 

aCr_ar ( r = 0 , 1 ,  . . , 2 s - l )  (3.18) 

and, for s = 0, of (3.4) : 
a~r a2r 

~X ~ a y  ]~ = aY- ax/~ (3.19) 

(The twistor 'wave equation' (3.19) applies also, of course, if s > 0 
with r replaced by any of the r Each r is separately homogeneous 
of degree - ( r  + 1) in X ~ and degree -(28 - r + 1) in Y", so that  by 
Euler's theorem 

X~ ar _ _ ( r +  1)r Y~ ~r - - - - ( 2 s - - r + l ) r  r (3.20) 
~X ~ 0 Y~ 

Thus (3.18) or (3.19), together with (3.20), are the twistor versions of 
the zero rest-mass free-field equations. Note that  in twistor space, a field 
(with spin) is regarded as a two-point function. The line P in the 
C-picture which connects the two points X and Y (of C) corresponds, 
in the M-picture, to the point P at which the field CA...L is evaluated, 
this being the intersection of the two null lines X and Y. The depend- 
ence of the r on the positioning of the points X, Y on P (C-picture) 
corresponds to the spin structure of the field (this being given, in the 
M-picture, by the dependence of CA...~ on choice of spin frame at 
the point P - - a s  defined by X ~, Y"). Note that  if s -- 0, then r is 
actually independent of X ~ and Y" except in so far as they define p~/3 

t See, for example, Y& Liubarski,  G. (1960). The Application of Group Theory 
in Physics (trans. Dedijer, S.). Pergamon Press, New York;  or Stre&ter, 1%. F.  
and Wightman,  A. S. (1964). PCT, Spin and Statistics and All That. W. A. 
Benjamin, New York. 
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according to (3.11). (This follows~ from X ~ ar Y~ = 0 = Y~ ar ~, 
which is a consequence of (3.19) and (3.20).) This simply reflects the 
scalar nature of the field in this case. 

The formula (3.10) can also be applied when X ~ and Y~ are not null 
and need not satisfy X ~ Y~ = 0. Then the line P of the C-picture, 
which connects the two points X and Y [P~/~ given as in (3.11)], does 
not lie on N and so represents a complex point P e M* in the M- 
picture. The M-picture realisation of (3.10) in its full generality is 
thus a complexified zero rest-mass field. I t  is this fact that  enables us 
to give a direct C-picture interpretation of a condition which ensures 
that  Ca...L is a positive (or alternatively negative) frequency field. 
(We recall tha t  any C-picture property has an interpretation in terms 
of the real space M. Thus, even the complex points of M* can be 
interpreted in terms of real structures (Penrose, 1967a) in M. I t  is 
interesting to note, in this context, that  much of the structure of 
f(Z ~) has a very direct 'real' interpretation in the M-picture. For null 
Z ~ we may think o f f ( Z  ~) as defining a function on the space of null 
lines of M, although the dependence o f f  on the scaling of Z ~ must be 
borne in mind. This function enters directly into defining the field 
r at real points P and also at some complex points P.) 

Let  us consider the nature of the condition of 'positive frequency' 
as applied to a field CA... L. I shall be concerned only with fields which 
are non-singular throughout the entire (conpactified) space-time M. 
This will imply, in particular, that  the field enjoys suitable asymptotic 
behaviour (i.e. in the neighbourhood of the null cone at infinity), 
yielding the 'peeling-off' property for the field (Penrose, 1965). In 
this context we must take into account the phenomenon of Grgin 
(1966): for a free-wave field we must expect the field to jump by  a 
factor (• 2s+2 as we cross the null cone at infinity. Owing to the four- 
valued nature of the M-picture realisation of twistors, this is indeed 
the type  of behaviour that  we should expect from (3.10). I shall, in 
fact, regard the field Ca...~ as being appropriately 'analytic across 
infinity' only if it possesses the correct Grgin discontinuity there. 
Then the fields under consideration will be imploding-exploding free- 
waves which tail off suitably towards infinity in all directions. In 
twistor terms, this condition is simply that  Cr(X ~, Y~) should be 
regular for all null X ~, Y~ for which X ~ Y~ = 0. 

We can imagine the field CA...L decomposed into plane waves. The 
various amplitudes of these waves will be given by  the null-datum 
(Penrose, 1963, 1967b) for CA...~ at all the various points on the null 

r See, for example, Hodge, W. D. and Pedoe, D. (1952). Methods of Algebraic 
Geometry, Vol. II ,  Cambridge University :Press. 
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cone at infinity. The null-datum for CA...~ at a point P ,  for a null 
hypersurface containing a null line X through P,  is simply 

~ Z ~ r r P ~ )  r ~, Y~) (3.21) 

where p~t~ is related to X% Y~ by  (3.11). (The fact that  r ~, Y~) 
depends on X ~ and P~B, and not on Y~, is a consequence of (3.14) 
and (3.16), with a =  0, co = 1.) The amplitude for the plane-wave 
component of CA...L corresponding to a fixed null direction is given 
by  (3.21) where X ~ is kept fixed and P ~  is allowed to vary. Here X is 

f I -- ~ - - ~  ~ - ' ~ ,  X 

~o\  '%,~ , / _  datum 
";~ ~ "% \ ~ / f  here  

~"/~N ~ (M- PICTURE) 
4" . . . .  % 

Figure  4 . - - A  nul l  h y p e r p l a n e  of c o n s t a n t  amp l i t ude ,  in  a p l ane  wave,  ha s  a 
v e r t e x  P on t he  nu l l  cone a t  infini ty.  The  a m p l i t u d e  is m e a s u r e d  b y  t he  complex  

nu l l  d a t u m  ~(X~;  P ~ ) .  

the generator of the null cone at infinity which corresponds to this 
fixed null direction (Fig. 4) ; P is a variable point on X which defines a 
null hyperplane of constant amplitude for the wave. (P is the 'vertex' 
of this null hyperplane.) 

We must express the condition that  the complex quanti ty r as a 
function of the real variable defining the position of P on the line X, 
has positive frequency. Let us imagine t X as a finite line. (The 
concept of a 'positive frequency function' defined on a null line is, in 
fact, invariant under restricted conformal transformations of M, 
since these give the restricted projective group on a real null line.$ 

To be  more  precise,  ' imagine  . . . '  c an  be i n t e r p r e t e d  to  m e a n  ' m a k e  a 
eonfo rmal  t r a n s f o r m a t i o n  on M ,  con t inuous  w i t h  t he  iden t i ty ,  so that~ a f t e r  
t he  t r a n s f o r m a t i o n  we h a v e  . . . ' .  Thus ,  we are a t  l i be r t y  to  choose coord ina tes  
so t h a t  ce r t a in  po in t s  a t  inf in i ty  receive f ini te  coordinates .  

:~ See Ge l ' l and ,  I .  M., Graev ,  M. I .  a n d  Vilenkin,  N. Ya.  (1966). Generalized 
Functions V: Integral Geometry and Representation Theory. Academic  Press,  
New Y o r k  a n d  London .  
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But  this is not really needed here, since we can imagine I to remain 
at infinity.) 

For simplicity, imagine our origin of coordinates to be situated on 
X. Then the real points of X have position vectors of the form up, 
where u is a real number and P is a real future-pointing null vector. 
Along X, we now have r as a complex function of the real variable u. 
This defines the amplitude of our plane-wave component. The wave 
has positive frequency if this function can be extended to a complex 
analytic function of the complex variable u + iw which is regular for 
w > 0. (The regular behaviour at infinity of r will be taken care of by  
the fact that  we are really concerned with entire compact manifold M.) 
Now, the position vectors (u + iw)l ~, with w > 0, have null future- 
pointing imaginary parts. Therefore (cf. Section 2) they define points 
P of M* which correspond in the C-picture, to lines lying in N w C +. 
I f  r  ~ ;P~)  remains regular for these points, then we shall have the 
required analytically extended function. (The fact that  r is a complex 
analytic function of~  + iw follows from the general analytic properties 
of the C-picture, but  this can also be seen explicitly if we go back to 
the definition of r given by  (3.1), where u is allowed to be replaced 
by  the complex variable u + iw). Thus, if we can construct r ~, Y~) 
which is regular whenever the line joining X and Y lies in hr u C +, we 
shall certainly have constructed a field of positive frequency. (In fact 
all fields of positive frequency will have this apparently more general 
property, but  the matter  will not be entered into here.) 

Now let us consider a condition o n f  which ensures that  r is of this 
type. We suppose, in fact, that  the points Z in N w C +, for which 
f (Z  ~) is singular, can be contained in two disjoint closed proper subsets 
S+, S_ of N k) C +. For each line P,  in C, which intersects both of S~,  
we shall choose our contour so as to surround the whole of P ~ S+ 
once in a positive sense (on the Riemann sphere S 2 which represents 
the points of P). Thus, the contour correspondingly surrounds the 
whole o f P  n S_ once in a negative sense. (This can always be arranged 
since P n S+ and P n S_ are disjoint closed sets. The contour need not 
be a connected curve but  may  consist of several loops.) I f  either of S+ 
or S_ is vacuous the situation becomes trivial and the field r would 
have to be zero. I shall suppose that  Cr is, in fact, not identically zero. 
Then at least some lines in C must intersect both of S~.  In fact, if 
p c ~V u C +, then P necessarily intersects both of S+, S_, since other- 
wise every line in N u C + 'sufficiently close' to P would share P ' s  
behaviour and we should have an open set in M* on which r vanishes. 
This would imply r -~ 0, since r is analytic, contrary to hypothesis. 

We see that  the field r is uniquely determined, for P ~ N u C + 
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(and for certain other P's also) by the division of the singularities of 
f between the two sets S+, S_. No more precise specification of the 
contour is required. Thus, by the preceding discussion, r ~, Y~) will 
be defined and analytic whenever the join of X and Y lies in N kJ C +, 
whence Cr is necessarily a field of positive frequency. To obtain a field 
of negative frequency we need only apply the identical construction 
but with C- replacing C +. We can also generalise the discussion, 
somewhat, if we consider functions f (Z  ~) where the singularities need 
be disconnected only in C + rather than in N k) C +. The resulting fields 
r would then not necessarily be regular at all real points P of M. 
This would enable us to consider non-analytic fields and distributions 
(Green's functions) on M as boundary values of complex analytic 
fields, t 

I t  is natural to ask how general the above construction is, for 
positive frequency fields. I t  appears, in fact, to be as general as one 
would wish it to be, but a complete argument is at the moment  
lacking. To indicate something of the generality involved, however, 
I can exhibit some examples. Let Q~ and R= be two right-handed 
twistors for which every linear combination is also right-handed. 
This is achieved by taking ~) and /~ as two points of a line lying 
entirely in C + and we have 

Q ~ ) ~ >  0, R~/~  > 0, Q~Q~R#R#>IQ~R~[2 (3.22) 

The intersection of the two planes Q and R (being the 'polar line' of 
the line joining Q, R) will lie entirely in C-. ThusS+ -- Q (~ (N u C +) 
and S_ = R n (N u C +) will be disjoint closed subsets of N u C + 
containing the relevant singularities of 

f (Z  ~) - (Q~Z~)-I(R#Z#)-2s-1 (3.23) 

Of course (if s > 0) we could allow other negative powers of Q~Z ~. 
Furthermore, we can form various finite linear combinations of 
expressions like (3.23), with differing Q's and R's. We could also take 
combinations of expressions like (3.23), but  with polynomials in Z ~ in 
the numerator and higher powers in the denominator. These would all 
y ieIdf ' s  which were algebraic functions of Z ~, but  we could generate 
non-algebraic functions also satisfying the required conditions, 
simply by integrating together expressions like (3.23) over some (not 
too extensive) domain. That this yields positive frequency fields r 
of considerable generality, at least, follows from the fact that  in the 

t See, for example, Streater,  R. F. and Wightman,  A. S. (1964). PCT, Spin 
and Statistics and All That. W. A. Benjamin, :New York. 

6 
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l imit  when the  inequalit ies (3.22) t end  to equalities, the  field genera ted  
by  (3.23) becomes the  ' F e y n m a n  propagator '  for CAB...L appropr ia te  
to the  character is t ic  initial value  problem. 

Final ly,  it  m a y  be ment ioned  t h a t  there  is an interest ing topological 
p rope r ty  of  such 'posit ive f requency '  s ingular i ty  sets in re la t ion to  
the  topology  of N,  as imbedded  in C. I shall i l lustrate  this explicit ly,  
only  in the  case o f f  given by  (3.23). As was ment ioned  in Section 2, 
we have  N ~ S 2 • S 3, C-  =~ C + =~ S ~' • E ~. We m a y  regard  C + as being 
ob ta ined  f rom N by  'filling in' each S 8 wi th  a cell E 4. The  complex 
plane Q meets  N in an S ~ of  the  p roduc t  S 2 • S 8. The  intersect ion of  
Q wi th  C + is an E ~ of  the  p roduc t  S 2 • E 4 which 'fills in'  this S 3. 
Similarly, the  complex plane R meets  N in ano ther  S ~ of  the  p roduc t  
S ~ • S 3 which is again 'filled in' by  an E 4 (= R n C +) of  the  p roduc t  
S 2 • E 4 (= C+). In  fac t  the  pencil of planes defined b y  Q and R (with 
twistors  Q~ §  ~) generates  the  ent ire  'filling in' of  S 2 • S ~ = N b y  
$ 2 •  E 4 =  C +. Now, f rom the  s y m m e t r y  between C + and  C-, it  
follows t h a t  C-  mus t  also 'fill in' N in exac t ly  the  same way.  However ,  
this  new 'filling in'  applies to  an essentially different way of expressing 
N as S 2 • S 3 f rom the  one given above.  I f  we consider N as imbedded  
in N u C-  r a the r  t h a n  in N w C +, it  emerges t h a t  the  sets Q n N and  
R n N are linlced in the  sense t ha t  any  submanifold of C-  which spans 
Q ~ N (i.e. whose bounda ry  is Q ~ N) must necessarily intersect  an y  
submanifold  of C-  which spans R n N. (Fur thermore ,  nei ther  Q (~ N 
nor  R (~ N spans an E ~ in C-.) Thus,  we see t h a t  a par t icular  topo- 
logical s t ruc ture  of the  s ingular i ty  regions of  our  'posit ive f requency '  
funct ion f ( Z  ~) emerges even in the  region Z e N. The  regions N n S+ 
and  N (~ S_ twist  a round  one another  in a way  opposite to  the  corre- 
sponding behaviour  for a 'negat ive  f requency '  function.  This is 
realised, in the  M-pic ture ,  as a r igh t -handed  twist  (for 'posit ive 
f requency '  f )  and  a le f t -handed twist  (for 'negat ive f requency '  f )  for 
the  null line systems eoncerned . t  

t The reader may be disturbed by this association of a screw-sense in space- 
time with the notion of 'positive frequency' for a zero rest-mass field. In the 
present formalism, the opposite association would have been achieved had we 
been concerned with a spinor field ~b~,B,...~, rather than CAB...~" With half-odd 
spin fields this association of a particle helicity with the field is familiar. Here, 
~his must be applied also to integral spin. Thus CaB describes the 'photino' (or 
positive helicity photon) while q~,B' describes the 'anti-photino'. Interactions 
will readily convert 'photinos' into 'anti-photinos'. 

The fact that the use of twisters entails an interrelation between '+i', 'right- 
handedness', and 'future-orientation' will be evident from the interpretation 
of the lines in C + as points of M* with position vectors having future-pointing 
imaginary parts, and the interpretation of points of C+ in terms of right- 
handed Robinson congruences. 
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4. Twistors for Curved Space-time 

We have seen, in Section 3, the importance of the complex analytic 
structure of the C-picture in the treatment of zero rest-mass fields. 
On the other hand, it is (apparently) precisely this complex analytic 
structure which is destroyed by the presence of conformal curvature 
(i.e., gravitation) in the M-picture. For Kerr's theorem tells us that  
the Cauchy-Riemann equations for the C-picture have an interpreta- 
tion as a 'shear-free' condition on null line systems in the M-picture. 
But when a shear-free 'bundle' of null lines (geodesics) enters a region 
of conformM curvature in space-time it will emerge on the other side 
possessing shear, in general. Thus, if M is conformally curved, we 
cannot interpret 'shear-freeness' as referring to null lines in their 
entirety, but only to null lines 'in the neighbourhood of a point'. We 
may think of a C-picture as referring accurately only to a 'sufficiently 
small' ncighbourhood of a point of M, for which the conformal curva- 
ture can be neglected. But we would like, also, to be able to discuss 
the interconnections between different neighbourhoods, so that  the 
real effect of conformal curvature (that is, of gravitation) on C-picture 
structure can be investigated. I t  will emerge, in fact, that  what is 
required is not a different C-picture for each 'neighbourhood of a 
point' in space-time, but rather one C-picture for the whole of space- 
time (roughly speaking) whose 'complex analytic structure' appears to 
'shift' as we move about the space-time, and which possess a (weaker) 
symplectic structure which does not shift. This will be the classical 
C-picture for M which we consider in this section. The passage to a 
quantised theory (Section 5) which this classical C-picture structure 
suggests will, in a certain sense, reinstate the full C-picture anMyticity. 

Let us suppose tha t  M is a four-dimensional manifold with a 
pseudo-Ricmannian metric ds 2 = gabdx~dx b, of signature (+, , , - ) ,  
and which possesses suitable global properties. These global restric- 
tions on M will not concern us particularly here and we may, if 
desired, simply restrict our attention to some suitably well-behaved 
open submanifold of space-time. The idea will be to represent the null 
geodesics of M as the points of some five-dimensional manifold AT. 
The invariant structure of N will be defined in terms of properties of 
null geodesics in M which do not refer to particular points on these 
null geodesics, but which can be read off by examining the geodesics 
at any of their points. For example, the property of a system of null 
geodesics that  they should generate a null hypersurface,'~ will turn out 

t That is, so that the tangent 3-space to the hypersurfaee is tangent to the 
light cone. This property 'propagates' in the sense that it holds globally (except 
for singularities) if it holds on any sp~ce-like cross-section of the hypersurfaee. 
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to represent an aspect of the invariant structure of N. On the other 
hand, the property of two null geodesics tha t  they intersect, will not. 
I t  will emerge tha t  the invariant structure of N will be most easily 
describable if we regard N as a submanifold of a six-real-dimensional 
manifold C. In  this sense, the classical C-picture will have value for the 
description even of conformally curved space-time. 

The discussion will be given here in terms of certain idealised space- 
times in the first instance, namely plane waves--or, more generally, 
plane-fronted waves (Brinkmann, 1923; Robinson, 1958)--for which 
the amplitudes can be given by Dirac delta functions. The idea will 
then be to regard the effect on the C-picture, of a general region of 
M-picture curvature, as a (non-linear) composition of effects of such 
plane-fronted waves. 

The general plane-fronted wave has a metric which can be put into 
the form 

ds 2 = 2(du + R(v, ~, ~)dv)dv - 2d~d~ (4.1) 

(R being real). The non-vanishing curvature tensor components for 
the metric (4.1) are defined by 

a 2 R/a~ 2, ~2 R/8~ 0~, a 2 R/a~ ~ (4.2) 

The metric satisfies Einstein's vacuum equations (and so represents 
a plane-fronted purely gravitational wave) if 

a e R / ~ a ~  = 0 (4.3) 

but we shall not be concerned with implications of (4.3) here. I f  (4.3) 
is not imposed, then the metric (4.1) covers the more general situation 
of a combined plane-fronted gravitational-electromagnetic-neutrino 
w a v e .  

I f  R = 0 over some range of v, then we have a region of Minkowski 
space-time [compare (2.3)]. I f  R is non-zero only within some finite 
range of v : vl < v < v2, then we have the situation of a 'sandwich 
wave'. In the idealized situation where the wave is allowed to become 
infinitesimal in duration (say, vl, v2 --> 0) while still producing a non- 
zero resultant effect, the function R becomes a delta function in v: 

R(v, ~, ~) =- $(v) r(~, ~) (4.4) 

With the substitution (4.4), the form of metric (4.1) does not satisfy 
the conditions normally required (Bruhat, 1959) for a space-time with 
delta functions in the curvature, since we here have a delta function in 
the metric tensor components. Under normal circumstances this would 
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lead to non-allowable p r o d u c t s  of delt~ functions in addition to 
derivatives of delta functions in the curvature. However, in the 
present situation, the space-time represented by (4.1), (4.4) is still 
allowable. I t  is, in fact, possible to make a coordinate substitution so 
that  the new metric tensor components are C o functions of the 
coordinates. Then the fact that  this leads only to a simple delta 
function (C -u) type of curvature becomes more obvious. But for our 
purposes the form (4.]) is more satisfactory since it leaves the fiat 
portions of the space-time in the required Minkowski form (2.3). The 
(delta function) curvature components are then obtained from the 
substitution of (4.4) into (4.2). 

Figure 5.--The two Minkowski half-spaces are joined in a 'warped' fashion along 
the null hyperplane K. The continuation Z* of the null line Z can be defined in 

terms of the null hypersurface 15, which continues as L*. 

We can describe the resulting manifold in the following 'scissors 
and paste' terms. We divide ordinary Minkowski space-time (metric 
ds  2 = 2 d u d v  - 2 d ~ d ~ )  into two portions M-,  M + by the removal of the 
null hyperplane v = 0. Thus M -  is given by the portion v < 0 and M + 
by v > 0. We wish to join M -  and M + together again, inserting a null 
hyperplane K as their common boundary, but in such a way that  the 
imbedding of K in each of M ~ appears 'warped' as viewed from the 
other (Fig. 5). More specifically, M-  w K and M + w K each have the 
normal Minkowski metric (2.3), but the two halves are joined in a way 
not consistent with a four-dimensional Minkowskian metric structure 
at  K. The three-dimensional metric induced on K by its imbedding in 
each of the two halves is the same, however. (A somewhat analogous 
two-dimensional example is obtained if we imagine two ordinary 
cones joined base to base. The two surfaces are intrinsically flat, but 
a delta function in the curvature resides along the edge at  which the 
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cones are joined.) For convenience, we use coordinates u, v, ~ in M-  
and u*, v*, ~* in M +, the entire manifold M being defined by: 

M -  u K:  ds 2= 2 d u d v -  2d~d~ 

(v ~< 0 with u, ~ unrestricted; u real) 

M + U K :  ds 2 = 2 d u * d v * -  2d~*d~* (4.5) 

(v*/> 0 with u*, ~* unrestricted; u* real) 

K: v*=v=O, ~*=~, u*=u-r(~,~) 

Thus, the generators of K are 'shunted down' by an amount r(~,~) 
when we pass from M -  to M +. Equations (4.5) are just another way 
of expressing what is meant by the metric (4.1) when the substitution 
(4.4) is made. 

The manifold M possesses two regions M-  and M + which are exactly 
flat. Thus, we can construct a C-picture in terms of either of these 
regions. A nullline in M -  can be given twistor coordinates Z ~ according 
to the scheme (2.8); similarly a null line in M + can be given twistor 
coordinates Z *~ according to the 'starred' version of (2.8). But  any 
null line in M -  which intersects K (i.e., which is not parallel to the 
null direction in K) will emerge as the uniquely defined null line, in M +, 
for which the two portions constitute a 'null geodesic' in M. We may 
think of such a 'null geodesic' as resulting when a limiting process is 
applied to null geodesics for spaces (4.1), as the function R(v,~,~) 
approaches the form (4.4). More conveniently, there is, however, a 
direct geometrical construction of these 'null geodesics'. This arises 
owing to the fact tha t  if null geodesics generate a null hypersurface 
in one portion of a space-time manifold, then they must continue to 
generate a null hypersurface in any other portion of the manifold. We 
must retain this property for the 'null geodesics' in M (as follows from 
the above limit construction). Thus, if the null line Z in M-  u K 
belongs to a null hypersurface L in M -  k) K,  the emergent null line 
Z* in M + t3 K must belong to a corresponding null hypersurface L* 
in M + k) K. We require tha t  : Z c3 K = Z* c~ K and L c~ K = L* (~ K. 
This serves to define Z* uniquely in terms of Z, because Z* c3 K fixes 
a point  on Z* while L* n K defines a tangent 2-plane element at  
Z* n K which must be orthogonal to Z*, thereby fixing the direction 

of Z*. 
Let us see this explicitly in terms of (4.5). A twistor Z ~, describing 

the null line Z according to (2.6), (2.8), satisfies 

ZO d~ = Z l  du, Z~ dv = Z l  d~ (4.6) 
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Z 2 = i ~ Z  1, Z 8 = i ~ Z  ~ - i u Z  1 (4.7) 

(Here, the point P is chosen to be Z (3 K, so that  v = 0.) Similarly, the 
starred versions of (4.6), (4.7) will also hold. In the case of (4.7), 
employing (4.5) we get 

Z .2  = i ~ Z  .1 ,  Z *~ = i ~ Z  *~ - i ( u  - r) Z .1  (4.8) 

In order to write the starred version of (4.6) in terms o f d u ,  dv,  d~ (i.e., 
to find the direction of Z* given Z) we need to use the fact that  Z* is 
orthogonal to the same vectors lying within K, at  Z* (~ K, as is Z. 
Denoting a direction at Z (~ K by  ~u: ~v: ~ in the u, v, ~ system, we 
have ~v = 0 if the direction is to lie within K. For the direction to be 
orthogonal to that  of Z, we have 

~ u d v  -k O . d u  = ~ d ~  A- ~ d ~  (4.9) 
whence, by (4.6), 

~U ~- ~-Z-6/-~ ~_ ~ZO/Z  1 (4.10) 

The starred version of this yields, with (4.5), 

ar Or - _  . 1  (4.11) / Z  + 

Equations (4.10) and (4.11) must represent identical conditions on 
8u: 8[: $~ since they must give the same 2-plane element. Hence, 

Z ~ : Z l = Z  *~ + Z * I ~  : Z .1 (4.12) 

Equations (4.7), (4.8) and (4.12) define the ratios of the Z *~ com- 
ponents in terms of the ratios of the Z ~ components, by elimination 
of ~ and u. With the most convenient choice of scale factor, we can set 

Z,O Z o -10r  Z ,  1 = Z 1  = - - Z  ~ ,  

Z * 2 = Z  2, Z * ~ = Z  3 + i Z  1 r - ~  

where ~ = - i Z ~ / Z  1. Setting 

- (4.14) 
we can write (4.13) comprehensively as 

Oh 
Z *~ = Z ~ + i 02~ (4.15) 

The transformation (4.15) has been derived for the effect due to a 
plane-fronted impulsive wave situated along the particular null 
hyperplane v = 0. But  because of its twistor form, (4.15) will clearly 
apply (with suitable h) to a n y  impulsive plane-fronted wave, The 
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funct ion h(ZS, Zs) of (4.14) is special in t h a t  i t  involves only the 
coordinates Z 2, Z 1 and  their  complex conjugates. Pu t t ing  

A s = (1,0, 0, 0) and  B s = (0, 0, 0, 1) (4.16) 

we can express this as the fact  t ha t  h is a function of 

AsZ~,BsZS;  AS2~,BS2s  (4.17) 

only. More generally, we could allow h to be any  real differentiable 
function of variables of  the type  (4.17), so t h a t  h is homogeneous of 
degree unity in Z s and also in Zs, where we allow A s and  B s to any pair 
of fixed null twistors satisfying A s/~s = 0. Note t h a t  Oh/O2s is a linear 
combinat ion of A s and  B s whence 

Oh Oh 
- -  - o  ( 4 . 1 s )  

a2, s OZ s 
Note,  also 

a~h 
a 2  s aZ ~ - 0 (4.19) 

For  the part icular  case considered in detail above, it  is the hyper-  
plane v = 0 which is generated by  the null lines given by  B s § i~A s. 
In  the general case, these null lines would be jus t  the generators of 
the null cone containing two intersecting null lines A and  B [cf. 
(2.10)]. In  the  above case (4.16), A is a t  infinity so t h a t  the cone 
becomes a hyperplane.  In  fact,  unless one of the generators of the 
cone is at  infinity, (4.15) does not  represent a pure impulse wave in a 
pseudo-Riemannian space-time but  only in a conformal space-time. 
We shall ignore this dist inction for the present purposes. There is, 
however, one special s i tuat ion which is of part icular  note, namely  
when both A and B are at  infinity, so t h a t  the null cone they  define 
becomes the null cone at  infinity itself. In  this case we m a y  regard the 
t ransformat ion  involved in (4.5) as yielding a supertranslation of the 
Bondi-Metzner-Sachs group'~ and (4.15) is its twistor  equivalent.  

Observe t ha t  (4.18) (together with real i ty:  h = h; and homogenei ty  : 
Z s ah/aZ s = h) implies t h a t  

Z*sZ*---~ = Z S 2 s  (4.20) 

so t h a t  the  scaling we chose for Z *s, in order to arrive at  (4.15), in 
fact  preserves the twistor  'norm'.  However,  (4.15) does not preserve 
the  twistor  scalar product  Z ~ Ys. In  particular,  if  Z ~ Ys = 0 (so the 
null lines Z and  Y, in M -  belong to a port ion of a null cone), then  in 
general Z *s Y% ~ 0 (so t h a t  the emergent  Z*, Y* in M + do not  belong 

t See Sachs, R. I~. (1962). Physical Review, 128, 2851. 
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to a portion of a null cone). This is closely related to the non- 
analyticity, in Z ~, of (4.15), since it illustrates tha t  a (shear-free) null 
cone picks up shear, in general, as it passes through an impulsive 
plane-fronted wave. (The only cases of a transformation (4.15) 
yielding a complex analytic twistor transformation would be given 
when h is bilinear in Z ~, Z~. In this case the conformal curvature in the 
impulsive wave would vanish and M would be conformally fiat.) 

We note the important fact that  whereas we originally defined the 
transformation Z ~ --> Z *~ for null twistors only (since the discussion 
was given in terms of null lines) we were led to the transformation 
(4.15) which applies equally to non-null twistors. (We may, perhaps, 
think of (4.19) as defining h away from N once the values of h on N 
are given.) Thus, the identity of a twistor can apparently be main- 
tained even as we pass through a region of conformal curvature. The 
geometrical significance of a non-null twistor becomes altered, how- 
ever. The representation of such a twistor by a Robinson congruence 
(cf. Section 2) cannot be maintained in the presence of conformal 
curvature, since this representation is based on the condition 
Y~ Z~ -- 0, for a null line Y to belong to the congruence Z. Nevertheless 
the entire C-picture for M does seem to retain a significance. We may 
think of a single point Z in the C-picture as being assigned twistor 
coordinates according to two different (non-analytically related) 
schemes, namely that  which assigns the coordinates Z ~, and tha t  
which assigns Z*% Thus we have two different complex analytic 
structures for C and two different scalar products, depending upon 
whether we view it from M -  or from M +. 

The space-time M that  we have just been considering is, of course, 
especially simple. We cannot expect to get such a complete twistor 
structure for a space-time M which is, perhaps, everywhere con- 
formally curved. However, the purpose here is somewhat different. 
We may imagine that  the effect of a region of general conformal 
curvature can, in some way, be composed of effects like that  produced 
by an impulsive plane-fronted wave. We are thus led to consider the 
group 3-  of transformations of twistor coordinates, which is generated 
by the transformations like (4.15). The invariant structure of C will 
then be precisely tha t  which is left invariant by 3-. 

I t  is convenient to consider the infinitesimal transformations of the 
form (4.15). Denoting the infinitesimal change in the twistor co- 
ordinates Z ~ by 3Z ~, we can write 

~H 
= i ( 4 . 2 1 )  
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where 
H = H ( Z  ~, Z~) (4.22) 

is real and separately homogeneous of degree unity in Z ~ and in 2~ : 

Thus, we have 

I t  follows now that  

H = ~ = Z ~ OH OH 

0Z~ 
(4.23) 

�9 0 H  (4 .24 )  ~ 2 ~  = - ~  

~(z~2~) = o (4 .25 )  

so that  the invariance of the twistor norm follows without any other 
conditions on H. We need not assume that  H is of the special form 
that  was required for h, namely of being a function of variables (4.17), 
with its consequence (4.18). Indeed, neither (4.18) nor (4.19) can be 
expected to apply to a general H defining an infinitesimal element 
of 3-. This is because the Poisson  brackets : 

0r 0 X i 0r 0 X (4.25a) 
[r x] - i oz: '  o2:~ o2~ o z  ~ 

do not preserve (4.18) or (4.19)�9 
The Poisson brackets [H, G] define the commutator of the two 

infinitesimal transformations defined by  H and by  G. Note that  
[H, G] satisfies the reality and homogeneity conditions (4.23) provided 
H and G both satisfy these conditions�9 The same applies to the sum 
H + G. Thus, these operations define a Lie algebra ~f. I t  is clear that  

will contain the Lie algebra of infinitesimal elements of 3-. (Very 
possibly ~f is no larger than this.) In any case it will follow that  any 
structure on C which is invariant under ~ will also be invariant under 
3-, i.e., be part  of the invar ian t  structure of C. The converse is an open 
question at present. 

Note that  we can write (4.21), (4.24) as 

8Z ~ = [Z ~, H], 82~ = [2~, HI (4.26) 

and, more generally, we have 

8r = [r H] (4�9 

for any function r of Z ~, Z~. Thus, if [r = 0 for all H satisfying 
(4.23), then r is part  of the invariant structure of C. By (4.25), a 
particular case would be r = Z~Z~, To obtain more of the invariant 
structure of C, we must consider 'tensor fields' on C. In particular, 
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there are certain invariant differential forms t on C. Noting that,  by 
(4.21), 

( O H )  �9 02H dZ~+i  02H 3(dZ~)=d i ~  = ~ [ 3 0 2 ~  O],[30~ dZ~ (4.28) 

and using the fact that  OH/OZ~ and OH/02~ are respectively homo- 
geneous of degrees one and zero in Z~, we obtain 

~(],~ dZ ~) = 0 (4.29) 

Thus ],~dZ ~ is part of-the invariant structure of C and, hence, so also 
is its exterior derivative d ( 2 ~ d Z  ~) = d2~ ^ d Z  ~ = 0 ,  i.e. 

~(d2~ ^ dZ ~) = 0 (4.30) 

The quanti ty d2~ ̂  dZ ~ is the usual invariant surface element 
associated with the 'Hamiltonian' equations (4.21), (4.24). By taking 
exterior products of these forms, higher degree invariant quantities 
can be (rather trivially) generated, e.g. Z~d2~ n dZ~ ^ d2~_; 
2~Z(~dZ~ ) ̂  d2~. The 7-form Z~dZ~ ^ dZ~ ^ d2~ ^ dZr ^ dZ v ̂  dZ~ ^ dZ~ 
tha t  can be built in this way is dual to Z ~ O/OZ ~. The invariance of this 
operator follows more directly from 

z ~ , H  = ~ [ r  (4.31/ 

which we can interpret as 

~ 0 

This is the condition for invariance of the operator Z ~ 0/0Z ~ under 5. 
The most important quantities belonging to the invariant structure 

of C can be collected together as follows: 

2~Z~ (4.33) 

Z ~ d2~, 2~ dZ ~ (4.34) 

d Z  ~ ^ d2~ (4.35) 

Z ~ - -  2 ~ - -  (4.36) 
OZ ~' 02~ 

I t  is of interest that  all these quantities have some direct significance 
in the M-picture. I t  is the vanishing of (4.33) which states that  the 
twistor Z ~ represents a real null line Z in M. The division of C into the 

t See footnote on page 92. 
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three parts C-, N, C + is invariant, being given by Z~Z~ > 0, = 0, < 0, 
respectively. However, the points of C + and C- do not appear to have 
any very direct invariant geometrical interpretation in M. As for 
(4.34), we may think o fZ  ~ and Z ~ ~- dZ  ~ as defining two infinitesimally 
neighbouring points Z and Z' in C. I f  Z and Z'  arc both on N, then in 
the M-picture, Z and Z' are infinitesimally neighbouring null lines and 
we have Z~Z~ = 0 and Z~dZ~ + dZ~Zcr = 0 (neglecting quantities of 
second order in dZ~). Thus, Z~d]~ is pure imaginary. Now, the 
imaginary part  of Z~dZ~ is positive or negative according as the null 
line Z' lies just to the future or just to the past of Z. I f  Z ~ dZ~ = 0, then 
a null hypersurface can contain both Z and Z' as neighbouring genera- 
tors. Now consider (4.35). We may think of Z ~, Z ~ + d Z  ~ and 
Z ~ + d ' Z  ~ as defining three neighbouring null lines Z, Z '  and Z" in M 
provided these three twistors are all null. Let us suppose tha t  this is 
so, and also tha t  any pair of Z, Z', Z" can belong to a null hyper- 
surface, i.e. Z~ ]~ = O, Z~dZ~ = O, Z~d'Z~ = 0. Then the condition 
tha t  all three of Z, Z', Z" can belong to one null hypersurface (i.e. 
tha t  there be no net rotation of Z, Z' ,  Z"  about one another) is 
dZ~d'Z~ - d'Z~dZ~ = 0, which in the notation of differential forms 
reads dZ ~ ^ dZ~ = O. The form dZ ~ ^ dZ~ defines a sympIectic structure 
on C. Finally, the invariance of (4.36) is a necessary prerequisite for 
the C-picture to make geometrical sense at all. For, we have tacitly 
assumed tha t  it is legitimate to think of C as a six-real-dimensional 
manifold, the points of which are defined by the ratios of the complex 
coordinates Z ~. The fact tha t  the relation between Z ~ and 2Z ~ is 
preserved under any transformation in ~s is implicit in the fact tha t  
the (degree of) homogeneity in Z ~ of a function ~b(Z~, Z~) is preserved 
under ~ .  The functions homogeneous in Z ~ arc simply the eigen- 
functions of the invariant operator Z ~ a/OZ ~. 

The above discussion has been centered on considerations of 
infinitesimal transformations. We may also consider finite trans- 
formations Z ~ --~ Z *~ belonging to ~-. For such transformations we 
must expect tha t  the expression of the Poisson brackets in terms of 

Z ~, Z~ will hold also for Z *~, Z*~. We have 

[ z  = 0 = [ z = ,  

Thus also 

[Z *~, Z*~] = 0 = [Z*~, Z*~], 

These equations can be stated 

OZ*~ a2f~ aZ *~ 

[ z  = (4 .37)  

[Z *~, Z*fl] = i~fl ~ (4.38) 

aZ~ 
. . . . .  (4 .39 )  

a2~ 
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or, equivalently 
dZ  *~ ^ dZ*--~ = dZ ~ ^ d2~ (4.40) 

If, in addition, we assume that  Z *~ is homogeneous of degree one in 
Z ~ and of degree zero in Z~, i.e. 

Z * ~ _  ___ OZ ~ ~Z,~ Z~ (4.41) 

then it follows that  

Z*~Z*----~ = Z~2~, Z*~d~--~ = Z~d2~ (4.42) 
also. 

To sum up, the invariant structure obtained here for the C-picture 
is defined by  a symplectic structure given by  dZ  ~ ^ dZ~, where the 
'homogeneity' operator Z ~ / ~ Z  ~ is also invariant. Equivalently, 
Z~Z~ and Z~dZ~ are invariant. I f  we restrict our attention to null 
twistors, i.e. to N, this structure describes a (conformally invariant) 
geometry of null geodesics in M, which heeds only the null geodesics 
as a whole and does not refer to points on these null geodesics. The 
non-null twistors appear to play a 'catalytic' role in simplifying the 
description of the geometry of N. The structure so obtained for N 
(and for C) is of a 'universal' nature; that  is to say, it does not reflect 
the local metric (or conformal) structure of M in any way. (We can 
see this by  removing a portion of M and joining it smoothly on to 
another space-time manifold, e.g. to fiat space-time. The invariant 
structure of C does not change.) To represent local structure of M - -  
and, in particular, its points--we would have to refer to some addi- 
tional (generally non-local) structure for N over and above its in- 
variant structure. 

5. A Hilbert Space 

The nature of the twistor transformations induced by  the presence 
of (conformal) curvature in the M-picture strongly suggests that,  in 
the passage to a quantum theory, we should identify a quantum 
operator Z~ with some multiple of an operator a/OZ ~. In order to 
realise such an identification, we must obtain the vectors of the 
appropriate Hilbert space on which these operators are to act. I t  is 
a remarkable fact that  one such space is already at hand, having been 
previously required for the twistor description of zero rest-mass fields 
given in Section 3. This is the space of the analytic functions f ( Z  ~) 
which are employed in the contour integrals (3.10). In order to get a 
Hilbert space, however, we shall require a definition of norm (or of 
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scalar product) for these functions. I shall not enter into all the 
details involved with this here, some of which involve topological 
questions concerning the singularity sets, but  merely give the formal  
expression for the Hilbert space scalar product. These detailed matters 
will be discussed elsewhere. 

Let  f (Z~) ,  g(Z ~) be two functions of the complex variables Z ~ Z 1, 
Z 2, Z s which are homogeneous of degree - 2 s -  2 and analytic in 
suitable domains. For example, we could choose domains of analyticity 
of the type  considered towards the end of Section 3, where the regions 
of N u C + which were excluded, were two disjoint closed sets (each of 
which intersected every line in _N w C+). The scalar product is then 

(gJf> = i1~2P(2 - 2~) ~ ~(W=)f(Z ~) (W~Z~)2~-~  A ~ .  (5.1) 

where k is a real numerical constant, $/r and ~ are differentials given 
by  

"If" = ~ 8  W~dW[~ A dW~, ̂  dW8 (5.2) 

= -}E~r8 Z ~ dZ~ A dZv A d Z  8 (5.3) 

(the E's being the usual Levi-Civita symbols), and where the (six- 
dimensional) region of integration (contour) is compact, and surrounds 
the singularities o f f  and g, and the region Wt~Zt~ = 0 in a suitable way. 
When s = 1, 11, 2 . . . .  the expression (5.1) is not defined as it stands, 
the value of the integral being zero and the multiplying factor infinite. 
In these cases we can, however, assign a meaning to (5.1) as the result 
of a limit process applied to s, where s is taken as a continuous variable. 
This will be discussed a little more shortly. 

We have to establish that  (5.1) is invariant under homologous de- 
formations of the contour over regions of analyticity of the integrand. 
Thus t we must verify that  the exterior derivative of the expression 
after the integral sign vanishes. As a lemma towards achieving this, 
consider any function p(Z~;Ul, . . . ,us,)  which is analytic and homo- 
geneous of degree - 4  in the Z ~ and which depends differentiably on 
the parameters ul . . . .  , uh. Then 

d(p~)  = ~-:du~ A (5.4) 

For an account of exterior cMeulus, see, for example, Hedge, W. V. D. 
(1952). Theory and Applications of Harmonic Integrals. Cambridge University 
Press; Flanders, It .  (1963). Differential t~orms, with Applications to the Physical 
Sciences. Academic Press, New York and London. 
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TO demonstrate the validity of (5.4), we must show tha t  the terms 
involving derivatives of the Z:  cancel out. We have 

d ( p ~ )  = p d ~  + dZ~ A ~ +~u.dU~A g~ (5.5) 
- . b  

and 

Op dZ~ A ~ 1 ap ,,: dZ~ A dZ~ A dZ~" A d Z  ~ 

1 op 
= 4[6 ~Zg Z~ E:/~y8 e~fly~ Ekpa r dZ k A dZP A d Z  ~ A d Z  ~ (5.6) 

= ~ z ,  Op 1 ~2~'-6 c~p~ dZ  ~ ̂  dZP ^ dZ" ^ dZ ~ 

by the skew-symmetry of dZ~ A dZ  fs A dZY A d Z  a and the properties of 
the ~'s. Now, by the homogeneity o fp  we have 

I_Z~ ap = (5.7) 

Furthermore, 
d ~  = -}E~p~dZ ~ A dZP ^ dZ ~ A d Z  ~ (5.8) 

Combining (5.5), (5.6), (5.7) and (5.8), we obtain (5.4) as required. 
The expression q = ~(W:~)f(Z ~) (W~Z~) ~s-~ which occurs in (5.1) is 

analytic and homogeneous of degree - 4  in Z:  and also in W:. I f  we 
apply (5.4), with the coefficients of the 4-form q$4 z in place of p, we 
see tha t  d(qCf" A ~ )  contains no term of degree four in the dZ's. 
Similarly, d(qr ~e) contains no term of degree four in the dW's .  
Hence d(q$4 r ^ ~ )  = 0, as required. This shows that  the integral (5.1) 
does not depend on the exact position of the contour , but only on its 
homology class in the region of analyticity of q. :It is the singularity 
regions o f f (Z : ) ,  ~(W:) and ( Z : W : )  -2+~ which must prevent the 
contour from being homologous to zero. Otherwise the integral in 
(5.1) would vanish. Something of this nature is, of course, to be 
expected, since it is the separation of singularities off,  in (3.10), which 
gives rise to a zero rest-mass field. 

I t  may be verified directly that  the expression (5.1) arises from 
precisely the usual definition of scalar product for zero rest-mass 
fields, in the cases s = 0, s = �89 (The argument will be given elsewhere.) 
The cases s = 1, 1�89 2, ... are less straightforward. Here the factor 
(ZP Wp) -~+~ is no longer singular at ZP Wp = 0, so the contour can 
now be deformed across this region. In fact, for the type of field con- 
sidered here, the contour can always be deformed to a point, so tha t  
the integral in (5.1) vanishes. This is compensated by the pole in 
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/"(2 -- 2S). TO obtain the meaning of (5.1) in these circumstances, we 
m a y  resort to a l imiting argument .  I f f  and g are mutipl ied by  suitable 
factors homogeneous of degree e, and / " ( 2 -  2s)(Z~WI~) -~+2~ is 
replaced by  I"(2 - 2s + e)(Z~ W~) -2+2~-~, then  (5.1) becomes well- 
defined. Allowing E to t end  to zero and the mult iplying factors to 
t end  to uni ty ,  we can obtain a finite meaning for (5.1) when 
s = 1, 1�89 2, . . .  also. 

Le t  us see this explicitly, for a part icular  choice of mult iplying 
factor.  Choose A~, B~ and the  contour suitably,  so t h a t  the contour 
avoids the region A~,Z~Bg W~ = 0. (This appears to be possible under  
'normal '  circumstances. For  more exotic functions f and  g i t  might  be 
necessary to choose more complicated mult iplying factors.) Then 

(gIf} = lim {ikF(2 - 2s + e) • 
e-->0 

• ~ y(W~)(B~ W~)~f(Z ~) (AyZT)~(Z" W , ) 2 - 2 ~ - ~  ^ ~} 
_ i ~ ( - 1 )  2~-9'  

• (5.9) 
(2s - 2 ) !  

• ~ g(W~)f(Z~)( Z~ W,)~_21n{B~WoA .Z', " " -  Y I Y ~ "  
ZP Wp ) A 

by  l 'Hospital ' s  rule, provided s = 1, 11, 2, . . . .  The fact  t h a t  (5.9) does 
not  change as A~ or B ~ are varied is again a consequence of the vanish- 
ing of the  integral in (5.1) (but wi th  a slightly modified funct ion in 
place o f f  or g), as is readily verified. Wi th  this in terpreta t ion [e.g. 
(5.9)] for the scalar product ,  i t  can be shown tha t  also in the  cases 
s = 1, 1�89 2, . . .  the expression (5.1) agrees with the usual definition in 
terms of fields. (The a rgument  will be given elsewhere.) The more 
complicated behaviour  for s -- 1, 1�89 2, . . . ,  t han  for s = 0, �89 seems to 
be related to the  fact  t h a t  a similar increase in complication occurs in 
the  usual formalism at  this point  owing to the  fact  t h a t  the number  
operator  becomes non-local (or involves potentials) when s > �89 I t  is 
also related to the existence of conserved integrals of the field (charge 
for s = 1 ; mass, m o m e n t u m  and angular  m o me n t u m for s =2) as we 
shall see shortly. Note,  part icularly,  t h a t  the scalar product  (5.1) is 
conformally invariant-~ (and afortiori Poincard invariant)  because of 
twistor  covariance. The definition can also be applied to non-half- 
integral spin s. The positive definiteness of (5.1) (for positive frequency 
fields) will be discussed elsewhere, as will the details of the  definition 
of the  Hilbert  space (e.g. two different functions f m a y  correspond to 
the  same Hilbert  space vector). 

t Compare Gross, L. (1963). Journal of Mathematics and Physics, 5, 687. 
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The object, now, is to show tha t  the operators Z ~ and ~aZ~ are 
equivalent  to each other in their  effect on the Hilbert  space. Tha t  is 
to say, for any  two functions f(Z~), g(Z ~) of the type  we have been 
considering, bu t  with f and g homogeneous of respective degrees 
-23 - 3 and - 2 s -  2, we have (A~ being constant),  

A~(glZ~lf}=(glA~Z~f} = ( A ~ z ~ f )  = A~ (g~2~ f )  (5.10) 

We must  verify the middle equal i ty  in (5.10). Thus, we have to show 
tha t ,  for all s, 

.4  (w z i s-2f(z {z (28- 1) + a~ ^ = o 
OW~ J 

(5.11) 
[since (28 - 1)F(1 - 28) = - /"(2 - 28)]. ( I f s  = �89 1, 1�89 . . . ,  then  (5.11) 
'automatical ly '  vanishes and does not, in itself, imply (5.10) for these 
s values. But  it  will follow tha t  (5.10) holds if  we can verify (5.11) for 
all real 8, since then  a limiting argument  on s will apply.) Now:~ (5.11) 
will hold if we can show tha t  the expression under  the integral sign 
is of the form ds  r for some 5-form f .  Set 

:Y = - �89 f f  (Zv) ~( W~) ( W~ Z [~) 2~-1 E~,~ W ~ d W, ^ d W. ^ ~f 

We wish to calculate ds  ~. By  (5.4), we need only consider the terms 
involving derivatives with respect to W's. The calculation is straight- 
forward if the ident i ty  

e~t~'~ dWp h dWv ^ dW~ = ~e~'a ~.p~,,Te~~bxC dW r h dW x h dWr (5.13) 

x dWr dW x^ dWr 

is used, the terms in A~e~t~"~'dW~ ̂  dW~ ^ dW~, cancelling out. The 
result  is t ha t  d:Y turns out  to be precisely the te rm under  the integral 
sign in (5.11), as required. 

On the basis of (5.10) we can now write 
<--- 

0 
z ~ = _ ( 5 . 1 4 )  

OZ~ 

where these are to be read as operators in the Hilbert  space. The 
conjugate of (5.14) gives us 

0 
Z~ -- aZ ~ (5.15 ) 

:~ See footnote on p. 92 
7 
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(Planck's constant has been implicitly absorbed into the Z ~ by the 
definition (5.1), since k has been chosen to be independent of s. This, 
then, implies a particular scaling for the r fields if the formulae 
of Section 3 are strictly adhered to.) We now have the commutation 
relation 

2~z~ - z~ 2~ = ~ (5 . ]6)  

which may be compared with (4.37) (we, of course, also have 
z~z~=z~z ~, 2~2~=2~2~). This suggests a classical-quantum 
correspondence (Dirac, 1958) 

i[r x] = Cx - x r  (5.1~)  

when r and X are to be suitable quantum operators. 
Note tha t  the 'homogeneity operator' Z ~ 0/OZ ~ is just Z~Z~. Since 

the eigenvalues of this operator are the values -2s  - 2, by (5.16) we 
can write 

-~(z~2~ + 2~z ~) = s ( 5 . 1 s )  

for the spin operator. The trace-free 'Hermitian' operator 

E~ ~ = Z:2~ - 1 ~ :  Zr 2 r (5.19) 

= 2 8 Z ~ - ~ 2~  Zr 

generates the infinitesimal conformal transformations of M (since if 
p:~ is 'Hermitian' and trace-free: ~ = p~:, p : :  = 0; then the infini- 
tesimal twistor transformation Z -+ Z (3~ + iep9 ) is defined by the 
operator iEp~:E:~ = ieZ~p~:~/aZ ~, neglecting c2). Thus, the fifteen 
components of E~ ~ include the energy, the three components of 
momentum and the six components of relativistic angular momentum, 
in addition to the five extra conservation laws which arise from 
the conformal invariance. I f  we wish to single out only the ten 
components of energy-momentum and angular momentum, then we 
employ the operator 

F ~/~ = E(7~ I~)Y (5.20) 

where I ~  is the (fixed) metric twistor (Penrose, 1967a) (whose only 
non-zero components, in the coordinate system of Section 2, are 
I ~ = -132 = l ; also, for I ~ ,  just I01 = -I10 -- 1 are non-zero). 

I t  is of interest to see what the M-picture interpretation of the 
operators Z ~ and O/~Z ~ amounts to. Let CA~...L be the spin s field 
corresponding to f ( Z  ~) as in Section 3. Then the spin s -  1 field 
corresponding to T~ Z~f(Za), where T~ is some constant twistor, is just 

CB...L : CAB...L( - i tcA ~- xAB'pB') : --iCAB...L ~'A (5.21) 
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where, as in (2.14), the constant spinors K A, PB' are defined by  
To = -K 1, T1 -- K ~ T2 = Pr, T8 = -Po'. Similarly, the spin s § �89 field 
corresponding to T~ Of/OZ~ is 

XAB...LM = i(2s + I)~(MCAB." .z) -- (~q" -- ixPQ'PP) VQ'Mr (5.22) 

= - ( s  + �89 (~  rQ'} r - ~Q' vQ,~ C e , . .  L 

One may verify directly that  the ~bB. ..~ and X~...~ of (5.21), (5.22) 
satisfy the zero rest-mass equation (3.3), by  virtue of (2.15): 
V p , ( ~ )  = 0. In (5.22), r acts as a kind of potential field for 
X~...M. Particularly in the case tSp = 0 (so r e is constant), this type 
of potential has been studied earlier (Penrose, 1965). 

Finally, we may t ry  to interpret, in the present formalism, the 
(conserved) 2-surface integrals of electromagnetic field (s = 1) or of 
linearised gravitational field (s = 2) which respectively define the 
total charge or total mass, momentum, and angular momentum of a 
source for the field. For this purpose we must allow ourselves to 
consider singularity regions for the functionfwhieh are more extensive 
than arose for the free-wave fields we had been considering pre- 
viously. For the case of charge we have 

Q = ]c~ f f (g~)  ~" (5.23) 

where f is homogeneous of degree - 4 ;  and for mass, momentum and 
angular momentun, 

G ~ = lc2 ~ Z~Z~f(Z :~) ~ (5.24) 

where f is homogeneous of degree -6 .  Here kl and k2 are constants, 
and the three-dimensional closed contour is chosen suitably so as to 
correspond to a region of free field surrounding the sources. Ex- 
pressions (5.23) and (5.24) can both be obtained by  directly translating 
the usual expressions in terms of the fields. (The arguments will be 
given elsewhere.) For free waves, the integrals (5.23), (5.24), of 
course, both must vanish. From this, we can see at once that  the 
integral in (5.1) must necessarily vanish for such waves (s = 1,2)--  
hence the necessity of the limiting procedure to define scalar product 
(s = 1,1�89 2 , . . . ) .  

Note that  (5.24) shows how the mass, momentum and angular 
momentum integrals can all be reduced to 'charge' integrals for 
certain spin-1 fields constructible from the given spin-2 field CeBCD. 

twistor For, if we multiply (5.24) by  a constant symmetric ~ S ~  then 
(5.24) reduces to (5.23), with f(Z~) replaced by S ~ Z  Z~f(Z~). In the 

7* 
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M-picture, this corresponds to calculating the 'charge' integral for 
the spin-1 field given by  

_ ]~2 A aCD 0~B - - ~ ~ , c ~  (5.25) 

where a cD is the symmetric spinor, satisfying VP'(Qa cm = 0, which 
corresponds to S ~  as in (2.17). For sources for which CA~C9 can be 
derived from a potential, the 'magnetic' parts of (5.24) vanish. I f  
S~rI~r is 'Hermitian' (i.e. =S3Y/~r), then this means that  there is 
zero 'magnetic charge' for OAB (as would follow if 0~B is derivable from 
a potential). This condition, in terms of (5.24), is the 'Hermiticity'  
relation 

G~r I~r = G~rI~r (5.26) 

Equation (4.26) is the condition for G ~/~ (= G/~) to be of the form 

G ~3-- B~(~I3)~ (5.27) 

where By ~ = Bus, B~ = = 0. 
We may compare (5.20) with (5.27). The F~3 of (5.20) describes the 

total mass, etc., in the sense of inertial mass or energy content of the 
field. However, G ~3 describes the total active mass, etc., as it appears 
as the source for the particular spin-2 field CABCD [defined by  the f of 
(5.24)]. This suggests a possible way that  the actual field equations of 
general relativity might eventually be incorporated into the present 
formalism. For CABOD to describe the gravitational field, we should 
expect something like 

A complication which will naturally arise, springs from the fact that  
CABC~ must, itself, contribute to ( F ~ ) .  This would result in non- 
linearities of a type  familiar in general relativity theory. 

6. Conclusions 

The twistor formalism appears to afford considerable scope for the 
expression of basic physical processes, several aspects of physics 
fitting unexpectedly naturally into the twistor framework. The 
development given here is an approximately 'historical' one. I t  was 
the desire to make the formalism fit in with general relativity which 
suggested the identification Z~ = O/OZ ~ as a basis for an approach to 
quantization. This in turn led to the correct twistor expression for the 
zero rest-mass field Hilbert  space scalar product (which had hitherto 



TWISTOI% QUANTISATIO:N AND CURVED SPACE-TIME 99 

p roved  to be elusive). The  identif icat ion emerged as being consistent 
with  this scalar  product .  I t  is thus  v e r y  t e m p t i n g  to  believe t h a t  a l ink 
be tween  space- t ime  cu rva tu re  and  q u a n t u m  processes m a y  be sup- 
plied b y  the  use of twis tors .  Then,  rough ly  speaking,  i t  is the  cont inual  
slight ' shif t ing '  of  the  in te rpre ta t ions  of  the  q u a n t u m  (twistor) 
opera tors  which resul ts  in the  cu rva tu re  of  space- t ime.  
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